chứng minh rằng với số nguyên a thì (a+2) - (a-7)*(a-5) chia hết cho 7
Chứng minh rằng với moi số nguyên a thì
a) a2 -a chia hết cho 2.
b) a3 -a chia hết cho 3.
c) a5 -a chia hết cho 5.
d) a7 -a chia hết cho 7.
với a,b là các số nguyên, chứng minh rằng nếu 6a^2+5ab-16b^2 chia hết cho 7 thì a^4-b^4 chia hết cho 7
Chứng minh rằng: Nếu a là số nguyên thì:
M=a(a+2) - a(a-5) - 7 chia hết cho 7
M = a(a + 2) - a(a - 5) - 7
M = a2 + 2a - a2 + 5a - 7
M = (a2 - a2) + (2a + 5a) - 7
M = 0 + 7a - 7
M = 7(a - 1)
Chứng minh rằng với moi số nguyên a thì
a) a2 -a chia hết cho 2.
b) a3 -a chia hết cho 3.
c) a5 -a chia hết cho 5.
d) a7 -a chia hết cho 7.
a) a2 – a =a(a-1), chia hết cho 2.
b) a3 -a = a( a2 – 1) = a(a-1)(a+1), tích này chia hết cho 3 vì tồn tại một bội của 3.
+ Ở phần a, b học sinh dễ dàng làm được nhờ các bài toán đã quen thuộc
+ Để chứng minh a(a -1 ) chia hết cho 2, ta đã xét số dư của a khi chia cho 2 (hoặc dụng nguyên lý Dirich- le )
c) Cách 1
A = a5 -1= a(a2+1)(a2 -1)
Xét các trường hợp a = 5k, a= 5k ± 1, a=5k ± 2
+Ta vận dụng vào tính chia hết của số nguyên về xét số dư
suy ra A chia hết cho 5.
Cách 2.
A = a5 -1= a(a2+1)(a2 -1)
= a(a2+1)(a2 -4+5)
= a(a2+1)(a2 -4)+ 5a( a2 -1)
= (a -2) (a-1)a(a+1)(a+2) + 5a(a2 -1)
Số hạng thứ nhất là tích của năm số nguyên liên tiếp nên chia hết cho 5,số hạng thứ hai cũng chia hết cho 5.
Chứng minh rằng với mọi a nguyên thì: (a+2) - (a-7)*(a-5) chia hết cho 7
chứng minh rằng với mọi số nguyên a thì 2 + 5a + 7 không chia hết cho 2
Đề bài sai thì phải. Nếu a lẻ thì biểu thức trên chia hết cho 2.
cho a và b là các số nguyên. chứng minh rằng a) nếu 100a+b chia hết cho 7 thì a+5b chia hết cho 7
chứng ming rằng cới mọi số nguyên a thì:
a, a^3 - a chia hết cho 3
b, a^7 - a chia hết cho 7
bài 2:chứng minh rằng: A=1^3+2^3+3^3+...+100^3chia hết cho B= 1+2+...+100
B1 a, a^3 - a = a.(a^2-1) = (a-1).a.(a+1) chia hết cho 3
b, a^7-a = a.(a^6-1) = a.(a^3-1).(a^3+1)
Ta thấy số lập phương khi chia 7 dư 0 hoặc 1 hoặc 6
+Nếu a^3 chia hết cho 7 => a^7-a chia hết cho 7
+Nếu a^3 chia 7 dư 1 thì a^3-1 chia hết cho 7 => a^7-a chia hết cho 7
+Nếu a^3 chia 7 dư 6 => a^3+1 chia hết cho 7 => a^7-a chia hết cho 7
Vậy a^7-a chia hết cho 7
b, a^7-a=a(a^6-1)
=a(a^3+1)(a^3-1)
=a(a+1)(a^2-a+1)(a-1)(a^2+a+1)
=a(a-1)(a+1)(a^2-a+1)(a^2+a+1)
=a(a-1) (a+1) (a^2-a+1-7) (a^2+a+1)
+7a (a-1) (a+1) (a^2+a-1)
=a (a-1) (a+1) (a^2-a-6) (a^2+a+1-7)
+7a (a-1) (a+1) (a^2+a-1)
+7a (a-1) (a+1) (a^2-a-6)
có: 7a(a-1) (a+1) (a^2+a-1)+7a (a-1) (a+1) (a^2-a-6) chia hết cho 7 (cùng có nhân tử 7)
ta cần chứng minh: a(a-1) (a+1) (a^2-a-6) (a^2+a+1-7) chia hết cho 7
thật vậy: a(a-1) (a+1) (a^2-a-6) (a^2+a+1-7)
=a(a-1) (a+1) [(a+2)(a-3)] [(a-2)(a+3)]
=(a-3) (a-2) (a-1) a (a+1) (a+2) (a+3) là tích của 7 số nguyên liên tiếp nên chia hết cho 7.
trong 7 số tự nhiên liên tiếp có 1 số chia hết cho 7,1 số dư 1,1 số dư 2,....và 1 số dư 6 khi chia cho 7
a^7-a=a(a^6-1)
=a(a^3+1)(a^3-1)
=a(a+1)(a^2-a+1)(a-1)(a^2+a+1)
=a(a-1)(a+1)(a^2-a+1)(a^2+a+1)
=a(a-1) (a+1) (a^2-a+1-7) (a^2+a+1)
+7a (a-1) (a+1) (a^2+a-1)
=a (a-1) (a+1) (a^2-a-6) (a^2+a+1-7)
+7a (a-1) (a+1) (a^2+a-1)
+7a (a-1) (a+1) (a^2-a-6)
có: 7a(a-1) (a+1) (a^2+a-1)+7a (a-1) (a+1) (a^2-a-6) chia hết cho 7 (cùng có nhân tử 7)
ta cần chứng minh: a(a-1) (a+1) (a^2-a-6) (a^2+a+1-7) chia hết cho 7
thật vậy: a(a-1) (a+1) (a^2-a-6) (a^2+a+1-7)
=a(a-1) (a+1) [(a+2)(a-3)] [(a-2)(a+3)]
=(a-3) (a-2) (a-1) a (a+1) (a+2) (a+3) là tích của 7 số nguyên liên tiếp nên chia hết cho 7.
trong 7 số tự nhiên liên tiếp có 1 số chia hết cho 7,1 số dư 1,1 số dư 2,....và 1 số dư 6 khi chia cho 7
b, với m lẻ từ hằng đẳng thức đáng nhớ ta có
a^m+b^m=(a+b) {a^(m-1)-[a^(m-2)]b+...-a.[b^(m-2)]+b^(m... chia hết cho a+b
Chứng minh với a,b là 2 số nguyên, nếu a.b chia hết cho 7 thì một trong 2 số a hoặc b pải chia hết cho 7