chứng minh rằng tổng của tích 4 số tự nhiên liên tiếp với 16 là số chính phương
1.Chứng minh tích của 4 số tự nhiên liên tiếp không là số chính phương
2.Chứng minh tích của 4 số tự nhiên liên tiếp cộng 1 là số chính phương
3.Chứng minh tích của 4 số tự nhiên chẵn liên tiếp cộng 16 là số chính phương
4.Chứng minh tích của 4 số tự nhiên lẻ liên tiếp cộng 16 là số chính phương
2.
Gọi x;x+1;x+2;x+3 là 4 số tự nhiên liên tiếp ( x\(\in\) N)
Ta có : x (x+1) (x+2 ) (x+3 ) +1
=( x2 + 3x ) (x2 + 2x + x +2 ) +1
= ( x2 + 3x ) (x2 +3x + 2 ) +1 (*)
Đặt t = x2 + 3x thì (* ) = t ( t+2 ) + 1= t2 + 2t +1 = (t+1)2 = (x2 + 3x + 1 )2
=> x (x+1) (x+2 ) (x+3 ) +1 là số chính phương
hay tích 4 số tự nhiên liên tiếp cộng 1 là số chính phương
Gọi x;x+1;x+2;x+3 là 4 số tự nhiên liên tiếp ( x
∈
∈ N)
Ta có : x (x+1) (x+2 ) (x+3 ) +1
=( x2 + 3x ) (x2 + 2x + x +2 ) +1
= ( x2 + 3x ) (x2 +3x + 2 ) +1 (*)
Đặt t = x2 + 3x thì (* ) = t ( t+2 ) + 1= t2 + 2t +1 = (t+1)2 = (x2 + 3x + 1 )2
=> x (x+1) (x+2 ) (x+3 ) +1 là số chính phương
hay tích 4 số tự nhiên liên tiếp cộng 1 là số chính phương
Chứng minh rằng tích của 4 số tự nhiên liên tiếp cộng với 1 là 1 số chính phương.
dat 4 so tn lie tiep co dang la a,a+1,a+2,a+3
a(a+1)(a+2)(a+3)+1=(a^2+3a)(a^2+3a+2)+1
=(a^2+3a+1-1)(a^2+3a+1+1)+1
(a^2+3a+1)^2-1+1=(a^2+3a+1)^2 la so cp
gọi 4 số tự nhiên liên tiếp là a;a+1;a+2;a+3. điều kiện : a\(\in\)N .
Ta xét: a(a+1)(a+2)(a+3) +1 = [a(a+3)][(a+1)(a+2)] +1
= (a2+3a)(a2+3a+2) +1
= (a2+3a+1-1)(a2+3a+1+1) +1
= (a2+3a+1)2 - 1+1
= (a2+3a+1)2 => Điều phải chứng minh
Chứng minh rằng tích của 4 số tự nhiên liên tiếp cộng với 1 là 1 số chính phương
Gọi 4 số tự nhiên, liên tiếp đó là n, n+1, n+2, n+3\(\left(n\in N\right)\)
Theo đề bài ra chúng ta có : n(n+1)(n+2)(n+3) + 1 = n.(n+3)(n+1)(n+2)+1
= (n2+3n)(n2+3n+2)+ 1 (*) Đặt n2+3n = t\(\left(t\in N\right)\)thì (*) = t(t+2)+1 = t2+2t+1 = (t+1)2
= (n2+3n+1)2 Vì\(n\in N\)nên suy ra : (n2+3n+1)\(\in N\)
=> Vậy n(n+1)(n+2)(n+3) là 1 số chính phương.
Hãy chứng minh rằng tích của 4 số tự nhiên liên tiếp cộng với 1 là một số chính phương.
đặt là S=(n+1)*(n+2)*(n+3)*(n+4)+1.Số 1 để im,nhân n+1 và n+4,n+2 và n+3.Trong 2 thừa số đó bạn bạn đặt là P*(P+2)+1=P2+2*P*1+12 là thành hằng đẳng thức.Suy ra nó là 1 SCP
Chứng minh rằng tích của 4 số tự nhiên liên tiếp cộng với 1 là một số chính phương
\(a\left(a+1\right)\left(a+2\right)\left(a+3\right)+1\)
\(=\left(a^2+3a\right)\left(a^2+3a+2\right)+1\)
\(=\left(a^2+3a+1-1\right)\left(a^2+3a+1+1\right)+1\)
\(=\left(a^2+3a+1\right)^2-1+1=\left(a^2+3a+1\right)^2\)
chứng minh rằng tổng của 4 số tự nhiên liên tiếp không là một số chính phương
Gọi 4 số tự nhiên liên tiếp là \(a,\left(a+1\right),\left(a+2\right),\left(a+3\right)\)
Tổng các số là \(a+\left(a+1\right)+\left(a+2\right)+\left(a+3\right)\)
\(=a+a+1+a+2+a+3\)
\(=4a+6\)
\(=4a+4+2\)
\(=4\left(a+1\right)+2\)
Tuy nhiên số chính phương chia hết cho 4 hoặc chia 4 dư 1
Mà tổng 4 số tự nhiên chia 4 dư 2 nên k phải số chình phương
\(=>ĐPCM\)
một phép chia có số chia là 5 ,số dư là 1 ,để phép chia hết và thương tăng thêm 2 đơn vị , cần thêm vào số bị chia mấy đơn vị
chứng minh rằng tổng của 4 số tự nhiên liên tiếp không là số chính phương
chứng minh
số chính phương chia 4 dư 0 hoac 1
A=n^2 (n so tu nhien)
n=2k => A=4k^2 chia het cho 4
n=2k+1=> A=(2k+1)^2=4k^2+4k+1 chia 4 du 1
Kết luận số chính phương chia cho 4 chỉ có thể dư 0 hoặc dư 1
Chứng minh rằng tích của 4 số tự nhiên liên tiếp không là số chính phương.
Chứng minh rằng tích của 4 số tự nhiên liên tiếp cộng 1 là số chính phương
Gọi 5 số tự nhiên liên tiếp là n- 2; n - 1; n ; n + 1; n + 2
Ta có : (n-2)2 + (n-1)2 + n2 + (n+1)2 + (n +2)2 = (n2 - 4n + 4) + (n2 - 2n + 1) + n2 + (n2 + 2n + 1)+( n2 + 4n + 4) = 5n2 + 10 = 5.(n2 + 2)
Ta có 5. (n2 + 2) chia hết cho 5 nhưng không chia hết cho 25
vì n2 + 2 không chia hết cho 5 (do n2 có thể tận cùng là 0;1;4;5;6;9 )
=> 5.(n2 + 2) không là số chính phương => đpcm
ta có: (n-1)n(n+1)(n+2) +1=[n(n+1)][(n-1)(n+2)] +1
=(n^2 +n)(n^2 +n -2) +1 (*)
Đặt n^2 +n =a
(*)<=> a(a-2) +1= a^2 -2a+1= (a-1)^2 là số chính phương
=>điều phải chứng minh
gọi 4 số đó là a,a+1,a+2,a+3
theo bài ra ta có
a(a+1).(a+2).(a+3)+1
nhóm a với a+1,a+2 với a+3 ta được: (a2+3a)(a2+3a+2)+1
đặt a2+3a+1=y => a2+3a=y-1; a2+3a+2=y2-1+1=y2 (đpcm)
ta có (.(y+1)(y-1)+1=y2