Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Đồ Ngốc
Xem chi tiết
Võ Đông Anh Tuấn
11 tháng 6 2016 lúc 21:29

 Bốn số ke kiên tiếp có dạng: 2n+1;2n+3;2n+5;2n+7 (n thuộc N) 
Ta có: 
(2n+5)(2n+7) - (2n+1)(2n+3) 
=4n²+24n+35-(4n²+8n+3) 
=16n+32 
Do 16n chia hét cho 16 và 32 chia hết chô 16 
=>16n+32 chia hết cho 16 
=>đpcm

cao mạnh lợi
Xem chi tiết
nguyen van huy
Xem chi tiết
binh
14 tháng 7 2017 lúc 13:28

Gọi 3 số đó lần lượt là x-1;x;x+1 (x-1)x+x(x+1)+(x+1)(x-1)=26 <=>x 2 -x+x 2+x+x 2 -1=26 <=>3x 2 -1=26 <=>3x 2=27 <=>x 2=9 <=>x=3 Vậy 3 số đó lần lượt là 2;3;4

nguyen van huy
14 tháng 7 2017 lúc 13:41

Bạ​n ơi hình như thiếu trường hợp 3 số tự nhiên liên tiếp -2 , -3 , -4

Phan Thị Kiều Ngân
Xem chi tiết
Tuấn Anh
Xem chi tiết
Iron Man
8 tháng 6 2016 lúc 20:31

Ô tô đi với vận tốc 50km/giờ vì :

         100 : 2 = 50

                   đs : 50

Hoàng Phúc
8 tháng 6 2016 lúc 20:33

Gọi 4 số lẻ đó là a-1;a+1;a+3;a+5

Ta có: \(\left(a+3\right)\left(a+5\right)-\left(a-1\right)\left(a+1\right)\)

\(=a\left(a+5\right)+3\left(a+5\right)-\left(a^2-1^2\right)\)

\(=a^2+8a+15-a^2+1=8a+16=16.\left(\frac{1}{2}a+1\right)\) luôn chia hết cho 16

=>ĐPCM

Cô Hoàng Huyền
9 tháng 6 2016 lúc 9:15

Gọi 4 số lẻ liên tiếp là \(2k+1,2k+3,2k+5\) và \(2k+7\left(k\in N\right)\)

Khi đó hiệu tích hai số cuối với hai số đầu là \(A=\left(2k+7\right)\left(2k+5\right)-\left(2k+3\right)\left(2k+1\right)=4k^2+24k+35-4k^2-8k-3\)

\(=16k+32=16\left(k+2\right)\)

Vậy A luôn chia hết cho 16.

FZ: E đặt 4 số lẻ như vậy ko hợp lý, vì đặt như vậy nếu cô lấy a lẻ thì thành số chẵn rồi :) Hơn nữa phần cuối em tách \(B=16\left(\frac{a}{2}+1\right)\) mà lại khẳng định B chia hết 16 là sai, vì nếu lấy a lẻ thì B không chia hết cho 16. Để bài em đúng e phải thêm điều kiện bên trên là a chẵn.

Trần Phương Hà
Xem chi tiết
Nguyễn Xuân Tiến
19 tháng 7 2017 lúc 21:10

Cho a là 1 số chia hết cho 5

=> 4 số nguyên liên tiếp không chia hết cho 5 là: a+1, a+2, a+3, a+4

Hiệu của tích 2 số cuối với hiệu tích 2 số đầu là: (a+3)(a+4) - (a+1)(a+2) = \(a^2+4a+3a+12-\left(a^2+2a+a+2\right)\)

=\(a^2+4a+3a+12-a^2-2a-a-2\)

=\(4a+10\)

Vì a chia hết cho 5 nên tận cùng của a là 0 hoặc 5

Nếu a tận cùng bằng 0 thì 4a tận cùng bằng 0

Nếu a tận cùng bằng 5 thi 4a tận cùng bằng 4.5 = 20 ( tận cùng cũng bằng 0)

=> 4a tận cùng bằng 0

=> 4a + 10 có tận cùng bằng 0

Vậy hiệu của tích 2 số cuối với tích 2 số đầu có tận cùng bằng 0

Tk mình nha

Hồ Thị Hạnh
Xem chi tiết
Nguyễn Hà Linh Nhi
4 tháng 12 2021 lúc 8:07

ousbdl

jvdajnvjl

nsdg

ouhqer

kgkrebvjdsjb

vq

wjkgb

Fbovafbeuonasf

Khách vãng lai đã xóa
Tuấn Nguyễn Minh
Xem chi tiết
Nguyễn Thanh Hằng
21 tháng 6 2017 lúc 15:32

Gọi 4 số lẻ liên tiếp đó là :

\(2n+1;2n+3;2n+5;2n+7\) \(\left(n\in N\right)\)
Ta có:
\(\left(2n+5\right)\left(2n+7\right)-\left(2n+1\right)\left(2n+3\right)\)
\(=4n^2+24n+35-\left(4n^2+8n+3\right)\)
\(=16n+32\)
Do \(16n⋮16\)1 và \(32⋮16\)6
\(\Rightarrow16n+32⋮16\)
\(\Rightarrowđpcm\)

Đức Hiếu
21 tháng 6 2017 lúc 15:34

Gọi 4 số lẻ liên tiếp lần lượt là \(2n-3;2n-1;2n+1;2n+3\) với \(n\in N\)*

Ta có:

\(\left[\left(2n+1\right).\left(2n+3\right)\right]-\left[\left(2n-3\right)\left(2n-1\right)\right]\)

\(=\left(4n^2+6n+2n+3\right)-\left(4n^2-2n-6n+3\right)\)

\(=4n^2+6n+2n+3-4n^2+2n+6n-3\)

\(=6n+2n+6n+2n=16n\)

Vì 16 chia hết cho 16 nên 16n chia hết cho 16

=> \(\left[\left(2n+1\right).\left(2n+3\right)\right]-\left[\left(2n-3\right)\left(2n-1\right)\right]\) chia hết cho 16

Vậy yêu cầu đề bài đã được chứng minh.

Chúc bạn học tốt!!!

Tuấn Nguyễn Minh
21 tháng 6 2017 lúc 15:33

haha

Khánh Ngô Ngọc
Xem chi tiết
Trần Đức Thắng
9 tháng 8 2015 lúc 21:20

Gọi ba số lẻ liên tiếp có dạng a ; a+1 ; a+3 

Theo bài ra ta có :

 (a+1)(a+3) = a(a+1) +70

  a^2 + a + 3a + 3 = a^2 + a + 70

  a^2 + 4a + 3   =a^2 + a + 70

 a^2 + 4a + 3 - a^2 - a = 70

    3a          = 70 - 3

      3a         = 67 

=> a= 67/3  ( loại)

Vậy không có số nào thỏa mãn