Cho 4 số lẻ liên tiếp:
CMR: Hiệu của tích 2 số cuối với tích 2 số đầu chia hết cho 16
Cho 4 số lẻ liên tiếp. CMR hiệu của tích hai số cuối với tích hai số đầu chia hết cho 16
Bốn số ke kiên tiếp có dạng: 2n+1;2n+3;2n+5;2n+7 (n thuộc N)
Ta có:
(2n+5)(2n+7) - (2n+1)(2n+3)
=4n²+24n+35-(4n²+8n+3)
=16n+32
Do 16n chia hét cho 16 và 32 chia hết chô 16
=>16n+32 chia hết cho 16
=>đpcm
a)cho 4 số lẻ liên tiếp CMR hiệu của tích 2 số cuối với tích 2 số đầu chia hết cho 16
b)cho 4 số nguyên liên tiếp hỏi tích của số ban đầu với số cuối nhỏ hơn tích giữa của 2 số giữa bao nhiêu đơn vị
c)cho 4 số nguyên liên tiếp giả sử tích của số đầu với số thứ 3 nhỏ hơn tích của số thứ 2 và số thứ 4 là 99 tìm bốn số nguyên đó
Bài 1:
a _ Tìm 3 số tự nhiên liên tiếp, biết rằng nếu cộng 3 tích, mỗi tích là tích của 2 trong 3 số đó thì được 26
b_ Cho 4 số lẻ liên tiếp. Chứng minh rằng: Hiệu của tích 2 số cuối với tích của 2 số đầu chia hết cho 16
Gọi 3 số đó lần lượt là x-1;x;x+1 (x-1)x+x(x+1)+(x+1)(x-1)=26 <=>x 2 -x+x 2+x+x 2 -1=26 <=>3x 2 -1=26 <=>3x 2=27 <=>x 2=9 <=>x=3 Vậy 3 số đó lần lượt là 2;3;4
Bạn ơi hình như thiếu trường hợp 3 số tự nhiên liên tiếp -2 , -3 , -4
cho hỏi : cho bốn số lẻ liên tiếp. chứng minh rằng hiệu của hai số cuối và tích hai số đầu chia hết cho 16
cho 4 số lẻ liêm tiếp. Chứng minh rằng hiệu của tích 2 số cuối với tích 2 số đâu chia hết cho 16
Ô tô đi với vận tốc 50km/giờ vì :
100 : 2 = 50
đs : 50
Gọi 4 số lẻ đó là a-1;a+1;a+3;a+5
Ta có: \(\left(a+3\right)\left(a+5\right)-\left(a-1\right)\left(a+1\right)\)
\(=a\left(a+5\right)+3\left(a+5\right)-\left(a^2-1^2\right)\)
\(=a^2+8a+15-a^2+1=8a+16=16.\left(\frac{1}{2}a+1\right)\) luôn chia hết cho 16
=>ĐPCM
Gọi 4 số lẻ liên tiếp là \(2k+1,2k+3,2k+5\) và \(2k+7\left(k\in N\right)\)
Khi đó hiệu tích hai số cuối với hai số đầu là \(A=\left(2k+7\right)\left(2k+5\right)-\left(2k+3\right)\left(2k+1\right)=4k^2+24k+35-4k^2-8k-3\)
\(=16k+32=16\left(k+2\right)\)
Vậy A luôn chia hết cho 16.
FZ: E đặt 4 số lẻ như vậy ko hợp lý, vì đặt như vậy nếu cô lấy a lẻ thì thành số chẵn rồi :) Hơn nữa phần cuối em tách \(B=16\left(\frac{a}{2}+1\right)\) mà lại khẳng định B chia hết 16 là sai, vì nếu lấy a lẻ thì B không chia hết cho 16. Để bài em đúng e phải thêm điều kiện bên trên là a chẵn.
Cho 4 số nguyên liên tiếp không chia hết cho 5, khi chia cho 5 được những số dư khác nhau. Chứng minh hiệu của tích hai sô cuối với tích hai số đầu là một số có tận cùng đúng 1 chữ số 0
* Các bạn giúp mình với!!!
Cho a là 1 số chia hết cho 5
=> 4 số nguyên liên tiếp không chia hết cho 5 là: a+1, a+2, a+3, a+4
Hiệu của tích 2 số cuối với hiệu tích 2 số đầu là: (a+3)(a+4) - (a+1)(a+2) = \(a^2+4a+3a+12-\left(a^2+2a+a+2\right)\)
=\(a^2+4a+3a+12-a^2-2a-a-2\)
=\(4a+10\)
Vì a chia hết cho 5 nên tận cùng của a là 0 hoặc 5
Nếu a tận cùng bằng 0 thì 4a tận cùng bằng 0
Nếu a tận cùng bằng 5 thi 4a tận cùng bằng 4.5 = 20 ( tận cùng cũng bằng 0)
=> 4a tận cùng bằng 0
=> 4a + 10 có tận cùng bằng 0
Vậy hiệu của tích 2 số cuối với tích 2 số đầu có tận cùng bằng 0
Tk mình nha
Chứng tỏ rằnga) Tổng của 2 số lẻ liên tiếp thì chia hết cho 4.b) Tích của 2 số tự nhiên liên tiếp thì chia hết cho 2.c) Tích của 3 số tự nhiên liên tiếp thì chia hết cho 6.d) Tích của 4 số tự nhiên liên tiếp thì chia hết cho 24.e) Tích của 5 số tự nhiên liên tiếp thì chia hết cho 120.
ousbdl
jvdajnvjl
nsdg
ouhqer
kgkrebvjdsjb
vq
wjkgb
Fbovafbeuonasf
Cho bốn số lẻ liên tiếp. Chứng minh rằng hiệu của tích hai số cuối với tích hai số đầu chia hết cho 16.
Gọi 4 số lẻ liên tiếp đó là :
\(2n+1;2n+3;2n+5;2n+7\) \(\left(n\in N\right)\)
Ta có:
\(\left(2n+5\right)\left(2n+7\right)-\left(2n+1\right)\left(2n+3\right)\)
\(=4n^2+24n+35-\left(4n^2+8n+3\right)\)
\(=16n+32\)
Do \(16n⋮16\)1 và \(32⋮16\)6
\(\Rightarrow16n+32⋮16\)
\(\Rightarrowđpcm\)
Gọi 4 số lẻ liên tiếp lần lượt là \(2n-3;2n-1;2n+1;2n+3\) với \(n\in N\)*
Ta có:
\(\left[\left(2n+1\right).\left(2n+3\right)\right]-\left[\left(2n-3\right)\left(2n-1\right)\right]\)
\(=\left(4n^2+6n+2n+3\right)-\left(4n^2-2n-6n+3\right)\)
\(=4n^2+6n+2n+3-4n^2+2n+6n-3\)
\(=6n+2n+6n+2n=16n\)
Vì 16 chia hết cho 16 nên 16n chia hết cho 16
=> \(\left[\left(2n+1\right).\left(2n+3\right)\right]-\left[\left(2n-3\right)\left(2n-1\right)\right]\) chia hết cho 16
Vậy yêu cầu đề bài đã được chứng minh.
Chúc bạn học tốt!!!
Tìm 3 số lẻ liên tiếp sao cho tích 2 số cuối = tích 2 số đầu +70
Gọi ba số lẻ liên tiếp có dạng a ; a+1 ; a+3
Theo bài ra ta có :
(a+1)(a+3) = a(a+1) +70
a^2 + a + 3a + 3 = a^2 + a + 70
a^2 + 4a + 3 =a^2 + a + 70
a^2 + 4a + 3 - a^2 - a = 70
3a = 70 - 3
3a = 67
=> a= 67/3 ( loại)
Vậy không có số nào thỏa mãn