Tìm GTLN của biểu thức P = √(x - 2) + √(4 - x)
Tìm x để biểu thức M=3/(2x^2-3x+4) đạt GTLN. Khi đó hãy tìm GTLN của biểu thức M.
Tìm GTLN, GTNN của các biểu thức sau và tìm điều kiện của x để biểu thức có GTLN, GTNN:
C=/x+1/+/x+2/+/x+3/+/x+4/+/x+5/
D=/x-1/+/x-2/+/x-3/+....+ /x-2017/
Giúp mk nha !
Tìm GTLN của biểu thức :
|x - 4|(2 - |x - 4|)
Bài làm:
Ta có: \(\left|x-4\right|.\left(2-\left|x-4\right|\right)\)
\(=-\left|x-4\right|^2+2.\left|x-4\right|\)
\(=-\left(\left|x-4\right|^2-2.\left|x-4\right|+1\right)+1\)
\(=-\left(\left|x-4\right|-1\right)^2+1\le1\left(\forall x\right)\)
Dấu "=" xảy ra khi: \(-\left(\left|x-4\right|-1\right)^2=0\Leftrightarrow\left|x-4\right|=1\Leftrightarrow\orbr{\begin{cases}x=3\\x=5\end{cases}}\)
Vậy Max = 1 khi x = 3 hoặc x = 5
có cái bài dễ vậy ko làm dc
\(\left|x-4\right|\left(2-\left|x-4\right|\right)\)
+) Nếu \(x\ge4\)
\(\left|x-4\right|\left(2-\left|x-4\right|\right)=\left(x-4\right)\left(6-x\right)=6x-x^2-24+4x\)
\(=x^2-10x-24=-\left(x-5\right)^2+1\le1\)
Dấu "=" xảy ra \(\Leftrightarrow-\left(x-5\right)^2=0\Leftrightarrow x-5=0\Leftrightarrow x=5\) ( tmđk )
+) Nếu \(x< 4\)
\(\left|x-4\right|\left(2-\left|x-4\right|\right)=\left(-x+4\right)\left(2+x-4\right)=\left(4-x\right)\left(x-2\right)\)
\(=4x-8-x^2+2x=-x^2+6x-8=-\left(x-3\right)^2+1\le1\)
Dấu "=" xảy ra \(\Leftrightarrow-\left(x-3\right)^2=0\Leftrightarrow x-3=0\Leftrightarrow x=3\) ( tmđk )
Vậy GTLN của bt trên = 1 \(\Leftrightarrow\orbr{\begin{cases}x=5\\x=3\end{cases}}\)
Tìm GTLN của biểu thức: x^2/x^4+x^2+1a
Bạn coi lại đề bài, mẫu số đoạn \(x^2+1a\) là sao nhỉ?
a) tìm GTLN của biểu thức P= (3x2 + 17): (x2+4)
b) tìm GTNN của biểu thức Q= (x2+4) : x
Tìm GTNN của biểu thức A= x^2-6x+10; B= 3x^2-12x+1; Tìm GTLN của biểu thức C= -x^2+2x+5; D= 4x-x^2; E = x.(x-3)(x-4)(x-7)
\(A=x^2-6x+10\)
\(\Leftrightarrow A=x^2-2\cdot x\cdot3+3^2-9+10\)
\(\Leftrightarrow A=\left(x-3\right)^2+1\ge1\) \(\forall x\in z\)
\(\Leftrightarrow A_{min}=1khix=3\)
\(B=3x^2-12x+1\)
\(\Leftrightarrow B=\left(\sqrt{3}x\right)^2-2\cdot\sqrt{3}x\cdot2\sqrt{3}+\left(2\sqrt{3}\right)^2-12+1\)
\(\Leftrightarrow B=\left(\sqrt{3}x-2\sqrt{3}\right)^2-11\ge-11\) \(\forall x\in z\)
\(\Leftrightarrow B_{min}=-11khix=2\)
Tìm GTLN của biểu thức:|x-4|*(2-(|x-4)
a) Tìm GTNN của biểu thức A = x − 2018 + − 100 + x − 2019
b) Tìm GTLN của biểu thức B = 4 − 5 x − 2 − 3 y + 12
Tìm GTLN của biểu thức: 2x^2/x^4+x^2+1
\(A=\dfrac{2x^2}{x^4+x^2+1}=\dfrac{6x^2}{3\left(x^4+x^2+1\right)}=\dfrac{2\left(x^4+x^2+1\right)-2x^4+4x^2-2}{3\left(x^4+x^2+1\right)}\)
\(A=\dfrac{2}{3}-\dfrac{2\left(x^2-1\right)^2}{3\left(x^4+x^2+1\right)}\le\dfrac{2}{3}\)
\(A_{max}=\dfrac{2}{3}\) khi \(x^2=1\)