giải hộ mink nha áp dụng tính chất dãy tỉ số bằng nhau tìm x, y biết \(\frac{x}{y}=\frac{2}{5}\)
B1 : Cho \(\frac{x}{3}\)= \(\frac{y}{6}\). Tìm x và y, biết xy = 162( áp dụng tính chất dãy tỉ số bằng nhau)
B2 : Cho \(\frac{x}{2}\)= \(\frac{y}{3}\)= \(\frac{z}{5}\). Tìm x và y,biết xyz = -240 ( áp dụng tính chất dãy tỉ số bằng nhau)
Giúp mình với nhé
B1 :
\(\frac{x}{3}=\frac{y}{6}=\frac{xy}{3\times6}=\frac{162}{18}=9\)
---> x = 3.9 = 27
---> y = 6.9 = 54
B2 :
\(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}=\frac{xyz}{2\times3\times5}=\frac{-240}{30}=-8\)
---> x = -8.2 = -16
---> y = -8.3 = -24
---> z = -8.5 = -40
xin tiick
tìm x,y,z
biết \(\frac{x}{y+z+1}=\frac{y}{z+x+1}=\frac{z}{x+y-2}=x+y+z\)
áp dụng tính chất dãy số tỉ lệ bằng nhau nha ^^
____________________________________________________
\(x+y+z=\frac{x}{y+z+1}=\frac{y}{z+x+1}=\frac{z}{x+y-2}=\frac{x+y+z}{2\left(x+y+z\right)+1+1-2}=\frac{1}{2}\)
\(\frac{x}{y+z+1}=\frac{x}{\frac{1}{2}-x+1}=\frac{1}{2}\Rightarrow x=\frac{1}{2}\)
y, z tương tự
tìm x,y biết 7x=4y và y-x =24 giải hộ mink nha làm theo tính chất dãy tỉ số = nhau lời giải chi tiết
7x = 4y nên \(\frac{y}{\frac{1}{4}}=\frac{x}{\frac{1}{7}}=\frac{y-x}{\frac{1}{4}-\frac{1}{7}}=\frac{24}{\frac{3}{28}}=224\)=> x = 224 : 7 = 32 ; y = 224 : 4 = 56
7x=4y => y/7 = x/4
ap dung day ty so = nhau ta co;
(y-x) /(7-4) = 24/3 =8
x= 4.8 = 32
y = 7.8 = 56
Theo mình thì bạn Phan Thanh Tịnh làm đúng đó!
Tìm x, y, z bằng cách áp dụng tính chất dãy tỉ số bằng nhau:
\(\frac{x}{2}=\frac{y}{3};\frac{y}{4}=\frac{z}{5}\)và x2 - y2 = -16
\(\frac{x}{2}=\frac{y}{3};\frac{y}{4}=\frac{z}{5}\) và \(x^2-y^2=-16\)
\(\Rightarrow\frac{x}{8}=\frac{y}{12};\frac{y}{12}=\frac{1}{15}\)
\(\Rightarrow\frac{x}{8}=\frac{y}{12}=\frac{z}{15}\)
+ Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x^2}{64}=\frac{y^2}{144}=\frac{z}{15}=\frac{x^2-y^2}{64-144}=-\frac{16}{-80}=\frac{1}{5}\)
Suy ra \(\frac{x^2}{64}=\frac{1}{5}\Rightarrow x=\frac{32}{5}\)
\(\frac{y^2}{144}=\frac{1}{5}\Rightarrow y=\frac{72}{5}\)
\(\frac{z}{15}=\frac{1}{5}\Rightarrow z=3\)
Vậy \(x=\frac{32}{5};y=\frac{72}{5};z=3\)
Chúc bạn học tốt !!!
Tìm x,y(Áp dụng tính chất của dãy tỉ số bằng nhau và một số tính chất khác)
\(\frac{2x}{3}=\frac{3y}{4}=\frac{4z}{5}\)và \(x+y+z=49\)
Dựa theo tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{2x}{3}=\frac{3y}{4}=\frac{4z}{5}=\frac{2x+3y+4z}{3+4+5}=\frac{2x+3y+4z}{12}\)
Rút gọn đi, ta có:
\(\frac{2x+3y+4z}{12}=\frac{x+3y+4z}{6}=\frac{x+y+4z}{2}=\frac{x+y+z}{\left(\frac{2}{4}\right)}=\frac{48}{\left(\frac{2}{4}\right)}=96\) (1)
Từ (1), ta có: \(\frac{2x}{3}=\frac{3y}{4}=\frac{4z}{5}=96\Rightarrow\hept{\begin{cases}2x=96.3\\3y=96.4\\4z=96.5\end{cases}}\Rightarrow\hept{\begin{cases}x=144\\y=128\\z=120\end{cases}}\)
Kết luận: .....
Đặt \(\frac{2x}{3}=\frac{3y}{4}=\frac{4z}{5}=k\)
\(\Rightarrow x=\frac{3}{2}k;y=\frac{4}{3}k;z=\frac{5}{4}k\)
Có: \(x+y+z=49\)
\(\Rightarrow\frac{3}{2}k+\frac{4}{3}k+\frac{5}{4}k=49\)
\(k.\left(\frac{3}{2}+\frac{4}{3}+\frac{5}{4}\right)=49\)
\(k.\frac{49}{12}=49\)
\(\Rightarrow k=12\)
\(\Rightarrow\hept{\begin{cases}x=\frac{3}{2}.12=18\\y=\frac{4}{3}.12=16\\z=\frac{5}{4}.12=15\end{cases}}\)
Vậy \(\hept{\begin{cases}x=18\\y=16\\z=15\end{cases}}\)
Tham khảo nhé~
1) Tìm x,y.z biết :
\(\frac{x}{y}=\frac{2}{5}\) ; 10z = 7y và 2x - y + 2z = 6
( giúp mình giải chi tiết và giải cách áp dụng tính chất dãy tỉ số bằng nhau nhé )
Mình cảm ơn !!!!!
Tìm x, y :
\(\frac{1+3y}{12}=\frac{1+5y}{5x}=\frac{1+7y}{4x}\)
giải theo cách áp dụng tính chất dãy tỉ số bằng nhau nha!!
Ai nhanh và đúng nhất đổi 2 tk nha
Ta có: \(\frac{1+5y}{5x}=\frac{1+7y}{4x}=\frac{1+5y-1-7y}{5x-4x}=\frac{-2y}{x}\)
\(\Rightarrow\frac{1+5y}{5x}=\frac{-2y}{x}\)\(\Rightarrow\frac{1+5y}{5}=-2y\)\(\Rightarrow1+5y=-10y\)\(\Rightarrow15y=-1\)\(\Rightarrow y=\frac{-1}{15}\)
Ta có: \(\frac{1+3y}{12}=\frac{1+5y}{5x}\)\(\Rightarrow\frac{1+3.\frac{-1}{15}}{12}=\frac{1+5.\frac{-1}{15}}{5x}\)\(\Rightarrow\frac{\frac{4}{5}}{12}=\frac{\frac{2}{3}}{5x}\)\(\Rightarrow5x=\frac{\frac{2}{3}.12}{\frac{4}{5}}=10\)\(\Rightarrow x=2\)
Tìm x,y,z
a. \(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\)biết \(x+2y-3z=20\)
b.x:4 = y:6 biết 3y- 4x= 8
Nhanh đi mình tick cho, sẽ lên điểm ;)
ÁP dụng tính chất dãy tỉ số bằng nhau nha
a) \(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\Leftrightarrow\frac{x}{2}=\frac{2y}{6}=\frac{3z}{12}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{x}{2}=\frac{2y}{6}=\frac{3z}{12}=\frac{x+2y-3z}{2+6-12}=\frac{20}{-4}=-5\)
\(\hept{\begin{cases}\frac{x}{2}=-5\\\frac{y}{3}=-5\\\frac{z}{4}=-5\end{cases}\Rightarrow\hept{\begin{cases}x=-10\\y=-15\\z=-20\end{cases}}}\)
b) Ta có: \(\frac{x}{4}=\frac{y}{6}\Leftrightarrow\frac{4x}{16}=\frac{3y}{18}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{3y}{18}=\frac{4x}{16}=\frac{3y-4x}{18-16}=\frac{8}{2}=4\)
\(\hept{\begin{cases}\frac{y}{6}=4\\\frac{x}{4}=4\end{cases}\Rightarrow}\hept{\begin{cases}y=24\\x=16\end{cases}}\)
ÁP DỤNG TÍNH CHẤT DÃY TỈ SỐ BẰNG NHAU,TA CÓ:
\(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=\frac{2y}{6}=\frac{3z}{18}=\frac{x+2y-3z}{2+6-18}=\frac{20}{-10}=-2\)(vì \(x+2y+3z=20\))
\(\Rightarrow\hept{\begin{cases}x=-4\\y=-6\\z=-8\end{cases}}\)
ÁP DỤNG TÍNH CHẤT DÃY TỈ SỐ BẰNG NHAU,TA CÓ:
\(\frac{x}{4}=\frac{y}{6}=\frac{4x}{16}=\frac{3y}{18}=\frac{3y-4x}{18-16}=\frac{8}{2}=4\)(vì 3y-4x=8)
\(\Rightarrow\hept{\begin{cases}x=16\\y=24\end{cases}}\)
a, từ \(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}vàx+2y-3z=20\)
- Áp dụng tính chất của dãy tỉ số = nhau, ta có
\(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=\frac{2y}{6}=\frac{3z}{12}=\frac{x+2y-3z}{2+6-12}=\frac{20}{-4}=-5\)
+) \(\frac{x}{2}=-5\Rightarrow x=-5.2\Rightarrow x=-10\)
+) \(\frac{y}{3}=-5\Rightarrow y=-5.3\Rightarrow y=-15\)
+) \(\frac{z}{4}=-5\Rightarrow z=-5.4\Rightarrow z=-20\)
Vậy x=-10; y= -15; z= -20
b) x:4= y:6 biết 3y-4x= 8
- Từ x:4=y:6 => \(\frac{x}{4}=\frac{y}{6}\)
- Áp dụng tính chất của dãy tỉ số = nhau ta có:
\(\frac{x}{4}=\frac{y}{6}=\frac{4x}{16}=\frac{3y}{18}=\frac{3y-4x}{18-16}=\frac{8}{2}=4\)
+). \(\frac{x}{4}=4\Rightarrow x=4.4\Rightarrow x=16\)
+) \(\frac{y}{6}=4\Rightarrow y=4.6\Rightarrow y=24\)
Vậy x= 16; y= 24
Tìm x,y(Áp dụng tính chất của dãy tỉ số bằng nhau và một số tính chất khác)
\(\frac{x-1}{2}=\frac{y-z}{3}=\frac{z-3}{4}\)và \(2x+3y-z=50\)