Chung minh dang thuc sau
a/ 1218. 912=1816
b/ 7520=4510 . 530
Bài 8: So sánh:
a) 2225 và 3150
b) 291 và 535
c) 9920 và 999910
Bài 9: Chứng minh đẳng thức:
a) 128 . 1816
b) 7520 = 4510 . 530
Bài 8:
a) \(2^{225}=\left(2^3\right)^{75}=8^{75}\)
\(3^{150}=\left(3^2\right)^{75}=9^{75}\)
Vì \(8^{75}< 9^{75}\Rightarrow2^{225}< 3^{150}\)
b) \(2^{91}=\left(2^{13}\right)^7=8192^7\)
\(5^{35}=\left(5^5\right)^7=3125^7\)
Vì \(8192^7>3125^7\Rightarrow2^{91}>5^{35}\)
c) \(99^{20}=\left(99^2\right)^{10}=9801^{10}< 9999^{10}\)
đúng điền 1,sai điền 0
a, 4510*530>7519
b,321>231
c,9920>999910
chung minh bat dang thuc cosi
BĐT Cosi cho 2 số a,b >0:
a + b >= 2căn(ab)
di từ: ( √a - √b)² ≥ 0 ( voi moi a , b ≥ 0 )
<=> a + b - 2√(ab) ≥ 0
<=> a + b ≥ 2√(ab)
dau "=" xay ra khi √a - √b = 0 <=> a = b
Ta có:\(\left(\sqrt{a}-\sqrt{b}\right)^2\ge0\)\(\forall a,b\ge0\)
\(\Leftrightarrow a+b-2\sqrt{ab}\ge0\)
\(\Leftrightarrow a+b\ge2\sqrt{ab}\left(đpcm\right)\)
\(a+b\ge2\sqrt{ab}\)
\(\Leftrightarrow a+b-2\sqrt{ab}\ge0\Leftrightarrow\left(\sqrt{a}-\sqrt{b}\right)^2\ge o\)(Luôn đúng)
chung minh bat dang thuc x^4 + 5 > x^2 + 4x
Chung minh dang thuc (a + b)^2 = (- a - b)^2 Mn giup e
\(\left(a+b\right)^2=a^2+2ab+b^2\)
\(\left(-a-b\right)^2=a^2-2\left(-a\right)b+b^2\)\(=a^2+2ab+b^2\)
\(\Rightarrow\left(a+b\right)^2=\left(-a-b\right)^2\)( đpcm )
Ta có:
\(\left(-a-b\right)^2=[-\left(a+b\right)]^2=[-\left(a+b\right)]\times[-\left(a+b\right)]=\left(a+b\right)\times\left(a+b\right)=\left(a+b\right)^2\)
\(\Rightarrow\left(a+b\right)^2=\left(-a-b\right)^2\)(đpcm)
Ta có (a+b)2=(-a-b)2
<=> a2+2ab+b2=-a2-2ab-b2
<=>a2-a2+2ab-2ab+b2-b2=0 (luôn đúng)
Vậy (a+b)2=(-a-b)2
BÀI NÀY GIẢI THEO CÁCH BIẾN ĐỔI TƯƠNG ĐƯƠNG BẠN NHÉ
cho a chia het cho5,bchia het cho 5;chung minh rang (a4-b4) chia het cho5 dung cong thuc "hang dang thuc dang nho" cong thuc3
vì a chia hết cho 5 nên a đồng dư với 0 mod 5
suy ra a^4 đồng dư với 0^5 đồng dư với 0 mod 5(1)
vì b chia hết cho 5 nên b đồng dư với 0 mod 5
suy ra b^4 đồng dư với 0^5 đồng dư với 0 mod 5(2)
từ (1),(2) suy ra a^4-b^4 đồng dư với 0-0=0 mod 5
suy ra a^4-b^4 chia hết cho 5 (đpcm)
chung minh dang thuc (a+b).(c+d)-(a+d).(b+c)
chung minh dang thuc sau la sai:
a+b+c-d=a-b+c-d
Không ai trả lời được à,câu này dễ mà
chung minh bat dang thuc 2(a^4+1) + (b^2 +1)^2>=2(ab+1)^2
chung minh dang thuc
-(-a+b+c)+(b+c-1)=(b-c+6)-(7-a+b)
\(-\left(-a+b+c\right)+\left(b+c-1\right)=a-b-c+b+c-1=a-1\\ \left(b-c+6\right)-\left(7-a+b\right)=b-c+6-7+a-b=a-1\)
=> đpcm