\(x^2+\left(\frac{x-1}{x}\right)^2=8\)
Giải phương trình giùm mik.
Trình bày rõ nhé.
Giải phương trình: \(x^2+6x+6+\left(\frac{x+3}{x+4}\right)^2=0\)
Phương trình ra nghiệm không đẹp nhưng mọi người vẫn giải giùm mình nhé
Tick cho mình trước khi đọc nha thể nào cũng đúng
Ta có \(x^2+6x^2+6+\left(\frac{x+3}{x+4}\right)^2=0\)
\(\Leftrightarrow\left(x+3\right)^2+\left(\frac{x+3}{x+4}\right)^2-3=0\)
\(\Leftrightarrow\left(x+3\right)^2-2\left(x+3\right)\frac{\left(x+3\right)}{\left(x+4\right)}+\left(\frac{x+3}{x+4}\right)^2+2\frac{\left(x+3\right)^2}{\left(x+4\right)}-3=0\)
\(\Leftrightarrow\left(x+3-\frac{x+3}{x+4}\right)^2+2\frac{\left(x+3\right)^2}{\left(x+4\right)}-3=0\)
\(\Leftrightarrow\left(\frac{\left(x+3\right)\left(x+4\right)-\left(x+3\right)}{x+4}\right)^2+2\frac{\left(x+3\right)^2}{\left(x+4\right)}-3=0\)
\(\Leftrightarrow\left(\frac{x^2+7x+12-\left(x+3\right)}{x+4}\right)^2+2\frac{\left(x+3\right)^2}{\left(x+4\right)}-3=0\)
\(\Leftrightarrow\left(\frac{x^2+6x+9}{x+4}\right)^2+2\frac{\left(x+3\right)^2}{\left(x+4\right)}-3=0\)
\(\Leftrightarrow\left(\frac{\left(x+3\right)^2}{x+4}\right)^2+2\frac{\left(x+3\right)^2}{\left(x+4\right)}-3=0\)
Đặt \(\frac{\left(x+3\right)^2}{x+4}=a\) pt <=> \(a^2+2a-3=0\Leftrightarrow\left(a+3\right)\left(a-1\right)=0\)
nên a=-3 hoặc a=1
Với a=-3 thì \(\frac{\left(x+3\right)^2}{x+4}=-3\Leftrightarrow x^2+6x+9=-3\left(x+4\right)\Leftrightarrow x^2+9x+21=0\)
nên pt này vô nghiệm
Với a=1 thì \(\frac{\left(x+3\right)^2}{x+4}=1\Leftrightarrow x^2+6x+9=\left(x+4\right)\Leftrightarrow x^2+5x+5=0\)
Giải ra được 2 nghiệm
Vậy....
Giải phương trình: \(x^2+6x+6+\left(\frac{x+3}{x+4}\right)^2=0\)
Phương trình ra nghiệm không đẹp nhưng mọi người vẫn giải giùm mình nhé
biết nghiệm là biết cách làm rồi,hỏi chi
Tìm nghiệm của phương trình sau : \(y^2=x\left(x+1\right)\left(x+7\right)\left(x+8\right)\)
b) giải hệ phương trìh \(\hept{\begin{cases}\sqrt{x-2}+\sqrt{4-x}=y^2-6y+11\\x+y+z=0\end{cases}}\)
Các bạn giải chi tiết giùm mk nhé
1.Giải phương trình: \(\frac{1}{x^2+9x+20}+\frac{1}{x^2+11x+30}+\frac{1}{x^2+13x+42}=\frac{1}{18}\)
2.Giải phương trình: \(8\left(x+\frac{1}{x}\right)^2+4\left(x^2+\frac{1}{x^2}\right)^2-4\left(x^2+\frac{1}{x^2}\right)\left(x+\frac{1}{x}\right)^2=\left(x+4\right)^2\)
Giải phương trình :\(8\left(x+\frac{1}{x}\right)^2+4\left(x^2+\frac{1}{x^2}\right)-4\left(x^2+\frac{1}{x^2}\right)\left(x+\frac{1}{x^2}\right)^2=\left(x+4\right)^2\)
\(\Leftrightarrow8\left(x+\frac{1}{x}\right)^2+4\left(x^2+\frac{1}{x^2}\right)\left[\left(x^2+\frac{1}{x^2}\right)-\left(x+\frac{1}{x}\right)^2\right]=\left(x+4\right)^2.ĐKXĐ:x\ne0\)
\(\Leftrightarrow8\left(x+\frac{1}{x}\right)^2+4\left(x^2+\frac{1}{x^2}\right)\left(x^2+\frac{1}{x^2}-x^2-2-\frac{1}{x^2}\right)=\left(x+4\right)^2\)
\(\Leftrightarrow8\left(x+\frac{1}{x}\right)^2-8\left(x^2+\frac{1}{x^2}\right)=\left(x+4\right)^2\)
\(\Leftrightarrow8\left[\left(x+\frac{1}{x}\right)^2-\left(x^2+\frac{1}{x^2}\right)\right]=\left(x+4\right)^2\)
\(\Leftrightarrow8\left(x^2+2+\frac{1}{x^2}-x^2+\frac{1}{x^2}\right)=\left(x+4\right)^2\)
\(\Leftrightarrow16=\left(x+4\right)^2\)
\(\Leftrightarrow x^2+8x+16=16\)
\(\Leftrightarrow x^2+8x=0\)
\(\Leftrightarrow x\left(x+8\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\left(l\right)\\x=-8\left(n\right)\end{cases}}\)
V...\(S=\left\{-8\right\}\)
^^
bạn ghi sai đề ở chỗ \(\left(x+\frac{1}{x}\right)^2\)chứ ko phải \(\left(x+\frac{1}{x^2}\right)^2\)nhé
Giải phương trình : \(8\left(x+\frac{1}{x}\right)^2+4\left(x^2+\frac{1}{x^2}\right)\left(x+\frac{1}{x}\right)^2=\left(x+4\right)^2\)
\(8\left(x+\frac{1}{x}\right)^2+4\left(x^2+\frac{1}{x^2}\right)\left(x+\frac{1}{x}\right)^2=\left(x+4\right)^2\)
\(\Leftrightarrow4\left(x+\frac{1}{x}\right)^2\left(x^2+\frac{1}{x^2}+2\right)=\left(x+4\right)^2\)
\(\Leftrightarrow4\left(x+\frac{1}{x}\right)^2\left(x+\frac{1}{x}\right)^2=\left(x+4\right)^2\)
\(\Leftrightarrow\orbr{\begin{cases}2\left(x+\frac{1}{x}\right)^2=x+4\\2\left(x+\frac{1}{x}\right)^2=-x-4\end{cases}}\)
Tới đây thì đơn giản rồi làm tiếp nhé:
Bạn nhân lần lượt ra, sau đó rút gọn, sau một hồi sẽ được:
\(\frac{4\left(x^2+1\right)^4}{x^4}=\left(x+4\right)^2\)
\(\Leftrightarrow\frac{4\left(x^2+1\right)^2}{x^2}=x+4\)
giải phương trình: \(8\left(x+\frac{1}{x}\right)^2+4\left(x^2+\frac{1}{x^2}\right)^2+4\left(x^2+\frac{1}{x^2}\right)\left(x+\frac{1}{x}\right)^2=\left(x+4\right)^2\)
Giải phương trình:
\(8\left(x+\frac{1}{x}\right)^2+4\left(x^2+\frac{1}{x^2}\right)^2-4\left(x^2+\frac{1}{x^2}\right)\left(x+\frac{1}{x}\right)^2=\left(x+4\right)^2\)
Giải phương trình:
\(8\left(x+\frac{1}{x}\right)^2+4\left(x^2+\frac{1}{x^2}\right)^2-4\left(x^2+\frac{1}{x^2}\right)\left(x+\frac{1}{x}\right)^2=\left(x-4\right)^2\)
ĐK: x khác 0
Đặt \(x+\frac{1}{x}=a\)\(\Rightarrow\left(x+\frac{1}{x}\right)^2=a^2\Leftrightarrow a^2=x^2+\frac{1}{x^2}+2\cdot x\cdot\frac{1}{x}\Leftrightarrow a^2-2=x^2+\frac{1}{x^2}\)
Có:
\(8\left(x+\frac{1}{x}\right)^2+4\left(x^2+\frac{1}{x^2}\right)^2-4\left(x^2+\frac{1}{x^2}\right)\left(x+\frac{1}{x}\right)^2\)
\(=8a^2+4\left(a^2-2\right)^2-4\left(a^2-2\right)a^2\)
\(=8a^2+4\left(a^4-4a^2+4\right)-4\left(a^4-2a^2\right)\)
\(=8a^2+4a^4-16a^2+16-4a^4+8a^2=16\)
Thay \(8\left(x+\frac{1}{x}\right)^2+4\left(x^2+\frac{1}{x^2}\right)^2-4\left(x^2+\frac{1}{x^2}\right)\left(x+\frac{1}{x}\right)^2=16\)
vào phương trình, ta có: \(\left(x-4\right)^2=16\)
\(\Leftrightarrow\orbr{\begin{cases}x-4=-4\\x-4=4\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=8\end{cases}}\)Mà điều kiện x khác 0 nên x=8
Vậy phương trình có nghiệm x=8