Tìm số tự nhiên x,y biết 7(x-2004)2=23-y2
tìm số tự nhiên x,y biết
\(7\left(x-2004\right)^2=23-y^2\)
\(23-y^2=7\left(x-2004\right)^2\ge0\\ \Leftrightarrow y^2\le23\)
Mà \(y\in N\Leftrightarrow y\in\left\{0;1;2;3;4\right\}\)
Với \(y=0\Leftrightarrow7\left(x-2004\right)^2=23\left(loại\right)\)
Với \(y=1\Leftrightarrow7\left(x-2004\right)^2=22\Leftrightarrow\left(x-2004\right)^2=\dfrac{22}{7}\left(loại\right)\)
Với \(y=2\Leftrightarrow7\left(x-2004\right)^2=19\Leftrightarrow\left(x-2004\right)^2=\dfrac{19}{7}\left(loại\right)\)
Với \(y=3\Leftrightarrow7\left(x-2004\right)^2=14\Leftrightarrow\left(x-2004\right)^2=2\left(loại\right)\)
Với \(y=4\Leftrightarrow7\left(x-2004\right)^2=7\Leftrightarrow\left[{}\begin{matrix}x-2004=1\\x-2004=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2005\\x=2003\end{matrix}\right.\)
Vậy \(\left(x;y\right)=\left(2005;4\right);\left(2003;4\right)\)
Tìm số tự nhiên(x,y) biết:7(x-2019)2=23-y2
Điều kiện đã cho \(\Leftrightarrow7\left(x-2019\right)^2+y^2=23\) (*)
Do \(\left(x-2019\right)^2,y^2\ge0\) nên (*) suy ra \(y^2\le23\Leftrightarrow y^2\in\left\{0,1,4,9,16\right\}\)
\(\Leftrightarrow y\in\left\{0,1,2,3,4\right\}\)
Hơn nữa, lại có \(y^2=23-7\left(x-2019\right)^2\). Ta thấy \(VP\) chia 7 dư 2.
\(\Rightarrow y^2\) chia 7 dư 2 \(\Rightarrow y\in\left\{3,4\right\}\)
Xét \(y=3\) \(\Rightarrow7\left(x-2019\right)^2=14\) \(\Leftrightarrow\left(x-2019\right)^2=2\), vô lí.
Xét \(y=4\Rightarrow7\left(x-2019\right)^2=7\) \(\Leftrightarrow\left(x-2019\right)^2=1\) \(\Leftrightarrow\left[{}\begin{matrix}x=2020\\x=2018\end{matrix}\right.\)
Vậy \(\left(x,y\right)\in\left\{\left(4;2020\right),\left(4;2018\right)\right\}\) thỏa mãn ycbt.
Tìm số tự nhiên x ; y biết : \(7\left(x-2004\right)^2=23-y^2\)
ta có: \(7.\left(x-2004\right)^2\ge0\)
\(\Rightarrow23-y^2\ge0\)
\(\Rightarrow y^2\in\left\{1;4;9;16;0\right\}\)
mà y là STN
=> \(y\in\left\{1;2;3;4;0\right\}\)
thay y = 1 vào bt
7.(x-2004)2 = 23 - 12
....
đến đây bn tự lm nha!
suy ra (x-2004)^2=\(\frac{23}{7}\)-\(\frac{y^2}{7}\)<4
suy ra \(\orbr{\begin{cases}\text{(x-2004)^2=0}\\\left(x-2004\right)^2=1\end{cases}}\)
suy ra \(\orbr{\begin{cases}x-2004=0\\x-2004=1\end{cases}}\)suy ra x=2004;x=2005;x=2003
\(\orbr{\begin{cases}x-2004=-1\\\end{cases}}\)
Với x=0 suy ra 23-y^2=0
suy ra y^2=23(loại)
Với x=1 suy ra 23-y^2=7
suy ra y^2=16
suy ra y=4(vì y thuộc N)
Vậy cặp số cần tìm là (x,y)=(2005;4);(2003;4)
TÌm các số tuej nhiên x,y biết:
7(x-2004)^2=23-y^2
TÌm các số tuej nhiên x,y biết:
7(x-2004)2=23-y2
Ta có:
\(y^2\ge0\Rightarrow23-y^2\le23-0=23\Rightarrow7\left(x-2004\right)^2\le23\Rightarrow\left(x-2004\right)^2\le3\Rightarrow\left[{}\begin{matrix}\left(x-2004\right)^2=0\\\left(x-2004\right)^2=1\end{matrix}\right.\)TH1:\(\left(x-2004\right)^2=0\)\(\Rightarrow x-2004=0\Rightarrow x=2004\Rightarrow y=\sqrt{23}\), vô lý
TH2:\(\left(x-2004\right)^2=1\)\(\Rightarrow\left[{}\begin{matrix}x-2004=-1\Rightarrow x=2003\Rightarrow y=4\\x-2004=1\Rightarrow x=2005\Rightarrow y=4\end{matrix}\right.\)
Vậy (x, y )ϵ{(2003; 4); (2005; 4)}
Tìm tất cả các số tụ nhiên biết:7(x-2004)=23-y2
Cơ bản mà chẳng cần phân tích gì
7(x-2004)^2=23-(y^2)
<=>
7(x-2004)^2+y^2=23
vế trái yrở thành tổng hai số không âm
|(x-2004)|<=1 vì 7.2^2=28>23
===
•x=2004=>loại vì y^2=23 không nguyên
•x=2003 ; 2005=>y^2=23-7=16
=>y=4
kl
x=2003&2005
y=4
7(x-2004)^2=23-(y^2)
<=>
7(x-2004)^2+y^2=23
vế trái yrở thành tổng hai số không âm
|(x-2004)|<=1 vì 7.2^2=28>23
===
•x=2004=>loại vì y^2=23 không nguyên
•x=2003 ; 2005=>y^2=23-7=16
=>y=4
kl
x=2003&2005
y=4
a) tìm các số nguyên tố x,y sao cho :51x+26y=2000
b)tìm số tự nhiên x,y biết :7(x-2004)2=23-y2
c)tìm x,y nguyên biết : xy+3x-y=6
d)tìm mọi số nguyên tố thỏa mãn:x2-2y2=1
d. Câu hỏi của Black - Toán lớp 7 - Học toán với OnlineMath
Bài 1: Tìm số tự nhiên x, y biết: \(7\left(x-2004\right)^2=23-y^2\)
Bài 2: a, b, c là số đo ba cạnh của một tam giác vuông với c là cạnh huyền. Chứng minh rằng: \(a^{2n}+b^{2n}\le c^{2n}\) ; n là số tự nhiên lớn hơn 0.
Tìm số tự nhiên x; y biết: 7(x- 2015)^2= 23- y^2