(Thái Bình)
Cho ba số dương \(a,b,c\) thay đổi thỏa mãn \(a^2+b^2+c^2=3\).
Tìm GTNN của biểu thức \(P=2\left(a+b+c\right)+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\).
1) Chứng minh rằng \(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9,\left(\forall a,b,c>0\right)\).
2) Cho \(a,b,c\)là ba số dương thay đổi luôn thỏa mãn điều kiện \(a+b+c=1\) . Tìm GTNN của biểu thức
\(P=\frac{9}{2\left(ab+bc+ca\right)}+\frac{2}{a^2+b^2+c^2}\).
Bài 1
*Chứng minh bằng AM-GM
Áp dụng bất đẳng thức AM-GM ta có :
\(\hept{\begin{cases}a+b+c\ge3\sqrt[3]{abc}\\\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge3\sqrt[3]{\frac{1}{abc}}\end{cases}\Rightarrow}\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge3\sqrt[3]{abc}\cdot3\sqrt[3]{\frac{1}{abc}}=9\sqrt[3]{abc\cdot\frac{1}{abc}}=9\)
Vậy ta có đpcm
Đẳng thức xảy ra <=> a=b=c
Bài 1
*Chứng minh bằng Cauchy-Schwarz
Áp dụng bất đẳng thức Cauchy-Schwarz dạng Engel ta có :
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{\left(1+1+1\right)^2}{a+b+c}=\frac{9}{a+b+c}\)
=> \(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge\left(a+b+c\right)\cdot\frac{9}{a+b+c}=9\left(đpcm\right)\)
Đẳng thức xảy ra <=> a=b=c
Cho 3 số dương a,b,c thay đổi thỏa mãn: \(a^2+b^2+c^2=3\)
Tìm giá trị nhỏ nhất của biểu thức: \(P=2\left(a+b+c\right)+\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
Ta có: \(0< a^2+b^2+c^2=3\Rightarrow a^2,b^2,c^2< 3\Rightarrow a,b,c< \sqrt{3}< 2\)
Xét bất đẳng thức phụ: \(2a+\frac{1}{a}\ge\frac{1}{2}a^2+\frac{5}{2}\)(*)
Thật vậy: (*)\(\Leftrightarrow\frac{\left(a-1\right)^2\left(2-a\right)}{2a}\ge0\)*đúng*
Áp dụng, ta được: \(P\ge\frac{1}{2}\left(a^2+b^2+c^2\right)+\frac{5}{2}.3=9\)
Đẳng thức xảy ra khi a = b = c = 1
Cho các số thực dương a , b , c thay đổi luôn thỏa mãn \(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=3\)
Tìm giá trị lớn nhất của biểu thức \(P=\frac{1}{\left(2a+b+c\right)^2}+\frac{1}{\left(2b+a+c\right)^2}+\frac{1}{\left(2c+a+b\right)^2}\)
ap dung bdt \(\frac{1}{x+y}\le\frac{1}{4}\left(\frac{1}{x}+\frac{1}{y}\right)\)
\(\frac{1}{2a+b+c}=\frac{1}{\left(a+b\right)+\left(a+c\right)}\le\frac{1}{4}\left(\frac{1}{a+b}+\frac{1}{a+c}\right)\)
\(\Rightarrow P\le\frac{1}{16}\left[\left(\frac{1}{a+b}+\frac{1}{a+c}\right)^2+\left(\frac{1}{a+b}+\frac{1}{b+c}\right)^2+\left(\frac{1}{b+c}+\frac{1}{a+c}^2\right)\right]\)
\(\Rightarrow16P\le\frac{2}{\left(a+b\right)^2}+\frac{2}{\left(b+c\right)^2}+\frac{2}{\left(a+c^2\right)}+\frac{2}{\left(a+b\right)\left(b+c\right)}+\frac{2}{\left(a+b\right)\left(a+c\right)}\)\(+\frac{2}{\left(b+c\right)\left(c+a\right)}\)
ap dung \(x^2+y^2+z^2\ge xy+yz+xz\) voi a+b=x, b+c=y, c+a=z
\(16P\le\frac{4}{\left(a+b\right)^2}+\frac{4}{\left(b+c\right)^2}+\frac{4}{\left(c+a\right)^2}\)
tiếp tục áp dụng bdt ban đầu \(\frac{4}{a+b}\le\frac{1}{a}+\frac{1}{b}\)
\(\Rightarrow\frac{1}{\left(a+b\right)^2}\le4.16.\left(\frac{1}{a}+\frac{1}{b}\right)^2\)
\(\Rightarrow16P\le\frac{1}{4}.16\left[\left(\frac{1}{a}+\frac{1}{b}\right)^2+\left(\frac{1}{b}+\frac{1}{c}\right)^2+\left(\frac{1}{c}+\frac{1}{a}\right)^2\right]\)
=\(\frac{1}{4}\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+\frac{2}{ab}+\frac{2}{bc}+\frac{2}{ac}\right)\)
tiep tuc ap dung bo de thu 2 ta co
\(16P\le\frac{1}{4}.4\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)=3\)
\(\Rightarrow p\le\frac{3}{16}\)dau =khi a=b=c=1
Nguồn : mạng :V vào thống kê coi hình
Cho a,b,c là các số thực dương thỏa mãn \(b^2+c^2\le a^2\). Tìm GTNN của biểu thức: \(P=\frac{1}{a^2}\left(b^2+c^2\right)+a^2\left(\frac{1}{b^2}+\frac{1}{c^2}\right)\)
Kurosaki Akatsu giải thế thì đề bài cho \(b^2+c^2\le a^2\) để làm gì?
Áp dụng bất đẳng thức AM-GM ta có :
\(P=\frac{1}{a^2}\left(b^2+c^2\right)+a^2\left(\frac{1}{b^2}+\frac{1}{c^2}\right)\)
\(P=\frac{b^2}{a^2}+\frac{c^2}{a^2}+\frac{a^2}{b^2}+\frac{a^2}{c^2}\ge4.\sqrt[4]{\frac{b^2}{a^2}.\frac{c^2}{a^2}.\frac{a^2}{b^2}.\frac{a^2}{c^2}}=4.1=4\)
=> \(Min_P=4\)
Với a, b, c thực dương áp dụng BĐT Cô-si ta có:
\(P=\frac{1}{a^2}\left(b^2+c^2\right)+a^2\left(\frac{1}{b^2}+\frac{1}{c^2}\right)=\left(\frac{b^2}{a^2}+\frac{c^2}{a^2}\right)+\left(\frac{a^2}{b^2}+\frac{a^2}{c^2}\right)\)
\(\ge2\sqrt{\frac{b^2}{a^2}.\frac{c^2}{a^2}}+2\sqrt{\frac{a^2}{b^2}.\frac{a^2}{c^2}}=2\left(\frac{bc}{a^2}+\frac{a^2}{bc}\right)\)
\(=2\left[\left(\frac{bc}{a^2}+\frac{a^2}{4bc}\right)+\frac{3a^2}{4bc}\right]\ge2\left(2.\sqrt{\frac{bc}{a^2}.\frac{a^2}{4bc}}+\frac{3\left(b^2+c^2\right)}{4bc}\right)\) (vì \(a^2\ge b^2+c^2\))
\(=2\left(2\sqrt{\frac{1}{4}}+\frac{3.2bc}{4bc}\right)\) (vì \(b^2+c^2\ge2bc\))
\(=2\left(2.\frac{1}{2}+\frac{3}{2}\right)=5\)
Vậy Pmin = 5
Đẳng thức xảy ra \(\Leftrightarrow\) \(\hept{\begin{cases}a^2=b^2+c^2\\b=c\end{cases}}\)
Cho số thực dương a,b,c thỏa mãn abc =1 . Tìm GTNN của biểu thức
P = \(\frac{\left(1+a\right)^2+b^2+5}{ab+a+4}+\frac{\left(1+b\right)^2+c^2+5}{bc+b+4}+\frac{\left(1+c\right)^2+a^2+5}{ac+c+4}\)
alibaba nguyễn giúp em với WTFシSnow
1) Cho 2 số dương x;y thay đổi thỏa mãn xy=2.
Tìm GTNN của M=\(\frac{1}{x}+\frac{2}{y}+\frac{3}{2x+y}\)
2) Cho a,b là các số dương thay đổi thỏa mãn a+b=2.
Tìm GTNN của Q=\(2\left(a^2+b^2\right)-6\left(\frac{a}{b}+\frac{b}{a}\right)+9\left(\frac{1}{a^2}+\frac{1}{b^2}\right)\)
mọi người giúp mình 2 bài này với, xin cảm ơn
1.Cho a,b,c,dương thỏa mãn a+b+c=1.Tìm GTNN của P=a3+b3+1/4c3
2.Cho a,b,c ko âm thoả mãn a+b+c=1.CMR \(ab+bc+ca-2abc\le\frac{2}{27}\)
3.Cho a,b là các số dương thỏa mãn ab=1.Tìm GTNN cảu biểu thức \(F=\left(2a+2b-3\right)\left(a^3+b^3\right)+\frac{7}{\left(a+b\right)^2}\)
24+t−94(∗)
Xét hàm (∗) được: MinF(t)=F(23)=−19
⇒MinP=MinF(t)=−19.dấu "=" xảy ra khi a=b=c=13
#Chuyên mục bất đẳng thức khởi động bước vào năm học mới#
Bài toán 41: Cho a, b, c là các số thực dương thỏa mãn\(a+b-c\ge0;b+c-a\ge0;c+a-b\ge0\)và \(\left(a+b+c\right)^2=4\left(ab+bc+ca-1\right)\)
Tìm GTNN của biểu thức \(S=\sqrt{\frac{a+b}{c}-1}+\sqrt{\frac{b+c}{a}-1}+\sqrt{\frac{c+a}{b}-1}+\frac{2\sqrt{2}}{\sqrt{a^2+b^2+c^2-2}}\)
Bài toán 46: Cho 3 số thực dương a, b, c thỏa mãn\(\sqrt{a-c}+\sqrt{b-c}=\sqrt{\frac{ab}{c}}\)
Tìm GTNN của biểu thức \(P=\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}+\frac{c^2}{a^2+b^2}\)
Bài toán số 41 có 2 cách làm, tôi làm cách thứ 2
Đặt \(Q=\sqrt{\frac{x}{y+z}}+\sqrt{\frac{y}{x+z}}+\sqrt{\frac{z}{x+y}}\)\(\Rightarrow Q^2=\frac{x}{y+z}+\frac{y}{x+z}+\frac{z}{x+y}+2\left(\sqrt{\frac{xy}{\left(y+z\right)\left(x+z\right)}}+\sqrt{\frac{yz}{\left(x+z\right)\left(y+z\right)}}+\sqrt{\frac{xz}{\left(x+y\right)\left(y+z\right)}}\right)\)ta thấy rằng \(\frac{x}{y+z}+\frac{y}{x+z}+\frac{z}{x+y}=\frac{1}{4}\left(\frac{x}{y+z}+\frac{y}{x+z}+\frac{z}{x+y}\right)\left(xy+yz+zx\right)\)
\(=\frac{x^2+y^2+z^2}{4}+\frac{xyz}{4}\left(\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{z+x}\right)\ge\frac{x^2+y^2+z^2}{4}\)
Áp dụng bất đẳng thức AM-GM ta có \(\sqrt{\frac{yx}{\left(z+x\right)\left(x+y\right)}}\ge\frac{2yx}{2\sqrt{\left(xy+yz\right)\left(yz+yx\right)}}\ge\frac{2xy}{2xy+yz+xz}\ge\frac{2xy}{2\left(xy+yz+zx\right)}=\frac{xy}{xy+yz+zx}\)
Tương tự ta có \(\hept{\begin{cases}\sqrt{\frac{yz}{\left(z+x\right)\left(z+y\right)}}\ge\frac{yz}{xy+yz+zx}\\\sqrt{\frac{xz}{\left(x+y\right)\left(y+z\right)}}\ge\frac{xz}{xy+yz+zx}\end{cases}}\)
\(\Rightarrow\sqrt{\frac{xy}{\left(y+z\right)\left(z+x\right)}}+\sqrt{\frac{yz}{\left(z+x\right)\left(x+y\right)}}+\sqrt{\frac{zx}{\left(x+y\right)\left(y+z\right)}}\ge1\)nên \(Q\ge\sqrt{\frac{x^2+y^2+z^2}{4}+2}\)
\(\Rightarrow Q\ge\sqrt{\frac{x^2+y^2+z^2}{2}+4}+\frac{4}{\sqrt{x^2+y^2+z^2}}\)
Đặt \(t=\sqrt{x^2+y^2+z^2}\Rightarrow t\ge\sqrt{xy+yz+zx}=2\)
Xét hàm số g(t)=\(\sqrt{\frac{t^2}{2}+4}+\frac{4}{t}\left(t\ge2\right)\)khi đó ta có
\(g'\left(t\right)=\frac{t}{2\sqrt{\frac{t^2}{2}+4}}-\frac{4}{t^2};g'\left(t\right)=0\Leftrightarrow t^6-32t^2-256=0\Leftrightarrow t=2\sqrt{2}\)
Lập bảng biến thiên ta có min[2;\(+\infty\)) \(g\left(t\right)=g\left(2\sqrt{2}\right)=3\sqrt{2}\)
Hay minS=\(3\sqrt{2}\)<=> a=c=1; b=2
Đặt a=xc; b=cy (x;y >=1)
Thay x=1 vào giả thiết ta có \(\sqrt{b-c}=\sqrt{b}\Rightarrow c=0\) (không thỏa mãn vì c>0)Thay y=1 vào giả thiết ta có \(\sqrt{a-c}=\sqrt{a}\Rightarrow c=0\)( không thỏa mãn vì c>0)Xét x,y>1 thay vào giả thiết ta có\(\sqrt{x-1}+\sqrt{y-1}=\sqrt{xy}\Leftrightarrow x+y-2+2\sqrt{\left(x-1\right)\left(y-1\right)}=xy\)
\(\Leftrightarrow xy-x-y+1-2\sqrt{\left(x-1\right)\left(y-1\right)}+1=0\)
\(\Leftrightarrow\left(\sqrt{\left(x-1\right)\left(y-1\right)}-1\right)^2=0\)
\(\Leftrightarrow\sqrt{\left(x-1\right)\left(y-1\right)}=1\Leftrightarrow xy=x+y\ge2\sqrt{xy}\Rightarrow xy\ge4\)
Biểu thức P được viết lại như sau
\(P=\frac{x}{y+1}+\frac{y}{x+1}+\frac{1}{x+y}+\frac{1}{x^2+y^2}=\frac{x^2}{xy+x}+\frac{y^2}{xy+y}+\frac{1}{x^2+y^2}+\frac{1}{\left(x+y\right)^2-2xy}\)
\(P\ge\frac{\left(x+y\right)^2}{2xy+x+y}+\frac{1}{x+y}+\frac{1}{\left(x+y\right)^2-2xy}=\frac{xy}{3}+\frac{1}{xy}+\frac{1}{x^2y^2-2xy}=\frac{x^3y^3-2x^2y^2+3xy-3}{3\left(x^2y^2-2xy\right)}\)
Đặt t=xy với t>=4
Xét hàm số \(f\left(t\right)=\frac{t^3-2t^2+3t-3}{t^2-2t}\left(t\ge4\right)\)
Ta có \(f'\left(t\right)=\frac{t^4-4t^3+t^2+6t-6}{\left(t^2-2t\right)^2}=\frac{t^3\left(t-4\right)+6\left(t-4\right)+18}{\left(t^2-2t\right)^2}>0\forall t\ge4\)
Lập bảng biến thiên ta có \(minf\left(t\right)=f\left(4\right)=\frac{41}{8}\)
Vậy \(minP=\frac{41}{24}\)khi x=y=z=2 hay a=b=2c
Cho ba số dương a,b,c thỏa mãn \(a+2b+3c=2014\).Tìm GTNN của biểu thức : \(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
Ta có
\(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge3\sqrt[3]{abc}.\frac{3}{\sqrt[3]{abc}}\ge9\)
Dấu = xảy ra khi \(a=b=c=\frac{2014}{6}=\frac{1007}{3}\)
Bài này mk làm đc tưf bữa mới đăng lên r ..