Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Phan Nhật Minh
Xem chi tiết
Hàn Minh Nguyệt
Xem chi tiết
Đặng Ngọc Quỳnh
12 tháng 3 2021 lúc 18:56

Ta có:

\(M=\frac{2x+y}{xy}+\frac{3}{2x+y}=\frac{2x+y}{2}+\frac{3}{2x+y}\)

\(=\left(\frac{3}{8}.\frac{2x+y}{2}+\frac{3}{2x+y}\right)+\frac{5}{8}.\frac{2x+y}{2}\)

Có: \(\frac{3}{8}.\frac{2x+y}{2}+\frac{3}{2x+y}\ge2\sqrt{\frac{3}{8}.\frac{2x+y}{2}.\frac{3}{2x+y}}=\frac{3}{2}\)

Dấu '=' xảy ra <=> \(\frac{3}{8}.\frac{2x+y}{2}=\frac{3}{2x+y}\)

Có: \(\frac{5}{8}.\frac{2x+y}{2}\ge\frac{5}{8}\sqrt{2xy}=\frac{5}{4}\)

Dấu '=' xảy ra <=> 2x=y và xy=2

Do đó \(M\ge\frac{3}{2}+\frac{5}{4}=\frac{11}{4}\)

Dấu '=' xảy ra <=> x=1 và y=2

Vậy GTNN của  M là 11/4 khi x=1 và y=2

Khách vãng lai đã xóa
Hày Cưi
Xem chi tiết
HHHHH
Xem chi tiết
✰Ťøρ ²⁷ Ťɾїệʉ Vâɳ ŇD✰
27 tháng 3 2020 lúc 15:29

Tham khảo link này nha

https://olm.vn/hoi-dap/detail/243232541423.htm

Khách vãng lai đã xóa
Bảo Châu Ngô
Xem chi tiết
Mischievous Angel
13 tháng 6 2016 lúc 21:17

_xin hỏi bài này có cần dùng bất đẳng thức Bunhiacopski không?

Bảo Châu Ngô
25 tháng 8 2016 lúc 8:20

. Bài này mình dùng AM-GM :))

Hàn Minh Nguyệt
12 tháng 3 2021 lúc 18:56

AM-GM là j vậy

Khách vãng lai đã xóa
Phan Khanh Duy
Xem chi tiết
Trần Quốc Đạt
31 tháng 1 2017 lúc 21:43

Đề thì vừa đúng vừa sai. Đề đúng vì max cần tìm là có thật. Nhưng đề sai vì kết quả quá xấu (thậm chí đến WolframAlpha còn giải ko trọn vẹn mà chỉ ra xấp xỉ).

Ý tưởng thế này: Đặt \(X=\sqrt{x}\) thì \(\sqrt{y}=\frac{1}{X}\) nên viết lại biểu thức thành:

\(Q=\frac{1}{X+2}+\frac{1}{X+\frac{1}{X}+1}+\frac{1}{\frac{1}{X}+1}=\frac{X^4+5X^3+8X^2+6X+1}{\left(X+1\right)\left(X+2\right)\left(X^2+X+1\right)}\)

Tới đây có giải cũng ko được đâu, vì...

Theo WolframAlpha thì quả thật biểu thức có max nhưng giá trị đó là:

\(Q\approx1,20411\) tại \(X\approx1,75108\).

Khi mình tra sâu hơn về cái giá trị \(X\) trên kia thì nhận ra giá trị đó là nghiệm của pt

\(x^6+4x^5+5x^4-6x^3-22x^2-20x-7=0\) (giải kiểu gì???)

Phan Khanh Duy
5 tháng 2 2017 lúc 12:32

Mình nghĩ đề bài đã cho điều kiện x,y là hai số dương có tích bằng 1 thì nên áp dụng bất đẳng thức AM-GM sẽ phù hợp với chương trình lớp 9

cơ mà bạn tra sâu hơn về giá trị x như thế nào để biết x là nghiệm của phương trình trên :v tò mò quá

Mai Tiến Đỗ
Xem chi tiết
Trần Minh Hoàng
2 tháng 1 2021 lúc 19:39

3: \(P=\dfrac{x}{\left(x+y\right)+\left(x+z\right)}+\dfrac{y}{\left(y+z\right)+\left(y+x\right)}+\dfrac{z}{\left(z+x\right)+\left(z+y\right)}\le\dfrac{1}{4}\left(\dfrac{x}{x+y}+\dfrac{x}{x+z}\right)+\dfrac{1}{4}\left(\dfrac{y}{y+z}+\dfrac{y}{y+x}\right)+\dfrac{1}{4}\left(\dfrac{z}{z+x}+\dfrac{z}{z+y}\right)=\dfrac{3}{2}\).

Đẳng thức xảy ra khi x = y = x = \(\dfrac{1}{3}\).

Trần Quỳnh Mai
Xem chi tiết
Bạch Dạ Y
Xem chi tiết
Super Star 6a
3 tháng 10 2021 lúc 23:41

Bài này thì có 2 cách Làm cách cồng kềnh nhất vậy :))

\(M=x^3\left(\frac{1}{xy+9}+\frac{1}{xz+9}\right)+y^3\left(\frac{1}{xy+9}+\frac{1}{yz+9}\right)+z^3\left(\frac{1}{yz+9}+\frac{1}{xz+9}\right)\)

C-S ; ta được : \(\frac{1}{xy+9}+\frac{1}{xz+9}\ge\frac{4}{x\left(y+z\right)+18}=\frac{4}{x\left(9-x\right)+18}=\frac{4}{3x+27-\left(x-3\right)^2}\ge\frac{4}{3x+27}\)

Suy ra : \(M\ge\frac{4}{3}\) . sigma \(\frac{x^3}{x+9}\) 

Tiếp tục AD C-S ; ta được : \(\frac{x^3}{x+9}+\frac{3}{16}\left(x+9\right)+\frac{9}{4}\ge\frac{9}{4}x\Rightarrow\frac{x^3}{x+9}\ge\frac{33}{16}x-\frac{63}{16}\)

=> sig ma \(\frac{x^3}{x+9}\ge\frac{33}{16}\left(x+y+z\right)-\frac{63}{16}.3=\frac{27}{4}\)

Suy ra : M \(\ge\frac{4}{3}.\frac{27}{4}=9\)

" = " <=> x = y = z = 3

Xong film 

Khách vãng lai đã xóa
Super Star 6a
3 tháng 10 2021 lúc 23:02

Ủa làm đề  hay s vậy ? Toàn mấy câu thi HSG

Khách vãng lai đã xóa
Super Star 6a
3 tháng 10 2021 lúc 23:43

câu bất này cx ko khó lắm ; nãy tui bấm máy tính nhầm thành ra mất thời gian haizz 

Khách vãng lai đã xóa