tìm các cặp số nguyên (x,y) biết : 2xy-5x-2y=12
Tìm cặp số nguyên ( x , y )
xy-5x+y=10
2xy-5x-2y=2
2xy--x-by=12
Tìm tất cả các cặp số x;y thỏa mãn :x2+2y2+2xy -5x-5y=-6 để x+y là số nguyên
tìm các cặp số tự nhiên x, y biết:
xy+5x+5y=92xy+5x-2y=105xy-3x+2y-11=0xy-2x+y-4=0xy-x+2y-2=42xy+2x+3y=12nhanh minh tick
1. xy + 5x + 5y = 92
=> (xy + 5x) + (5y + 25) = 92 + 25
=> x(y + 5) + 5(y + 5) = 117
=> (x + 5)(y + 5) = 117
=> x + 5 \(\in\)Ư(117) = {-1;1;-3;3;-9;9;-13;13;-39;39;-117;117}
Mà x >= 0 => x + 5 >= 5
=> x + 5 \(\in\){9;13;39;117}
Ta có bảng sau:
x + 5 | 9 | 13 | 39 | 117 |
x | 4 | 8 | 34 | 112 |
y + 5 | 13 | 9 | 3 | 1 |
y | 8 | 4 | -2 (loại) | -4 (loại) |
Vậy; (x;y) \(\in\){(4;8);(8;4)}
các câu còn lại tương tự như bài mình vừa làm
tìm các cặp số tự nhiên x,y:
B, (2x+1).(y-3)=10
C, 2xy-x+2y=13
D, 6xy-9x-4y+5=0
E, 2xy-6x+y=13
F, 2xy-5x+2y=148
Giải:
b) \(\left(2x+1\right).\left(y-3\right)=10\)
\(\Rightarrow\left(2x+1\right)\) và \(\left(y-3\right)\inƯ\left(10\right)=\left\{1;2;5;10\right\}\)
Vì \(\left(2x+1\right)\) là số lẻ nên \(\left(2x+1\right)\in\left\{1;5\right\}\)
Ta có bảng giá trị:
2x+1 | 1 | 5 |
y-3 | 5 | 1 |
x | 1 | 2 |
y | 8 | 4 |
Vậy \(\left(x;y\right)=\left\{\left(1;8\right);\left(2;4\right)\right\}\)
c) \(2xy-x+2y=13\)
\(\Rightarrow x.\left(2y-1\right)+\left(2y-1\right)=12\)
\(\Rightarrow\left(x+1\right).\left(2y-1\right)=12\)
\(\Rightarrow\left(x+1\right)\) và \(\left(2y-1\right)\inƯ\left(12\right)=\left\{1;2;3;4;6;12\right\}\)
Vì \(\left(2y-1\right)\) là số lẻ nên \(\left(2y-1\right)\in\left\{1;3\right\}\)
Ta có bảng giá trị:
x+1 | 12 | 4 |
2y-1 | 1 | 3 |
x | 11 | 3 |
y | 1 | 2 |
Vậy \(\left(x;y\right)=\left\{\left(11;1\right);\left(3;2\right)\right\}\)
Giải: (tiếp)
d) \(6xy-9x-4y+5=0\)
\(\Rightarrow3x.\left(2y-3\right)-4y=-5\)
\(\Rightarrow3x.\left(2y-3\right)-4y+6=1\)
\(\Rightarrow3x.\left(2y-3\right)-2.\left(2y-3\right)=1\)
\(\Rightarrow\left(3x-2\right).\left(2y-3\right)=1\)
\(\Rightarrow\left(3x-2\right)\) và \(\left(2y-3\right)\inƯ\left(1\right)=\left\{1\right\}\)
Ta có bảng giá trị:
3x-2 | 1 |
2y-3 | 1 |
x | 1 |
y | 2 |
Vậy \(\left(x;y\right)=\left\{\left(1;2\right)\right\}\)
e) \(2xy-6x+y=13\)
\(\Rightarrow2x.\left(y-3\right)+\left(y-3\right)=10\)
\(\Rightarrow\left(2x+1\right).\left(y-3\right)=10\)
Còn lại câu e nó giống hệt câu b nha nên câu lm giống nó là đc!
f) \(2xy-5x+2y=148\)
\(\Rightarrow2y.\left(x+1\right)-5x-5=143\)
\(\Rightarrow2y.\left(x+1\right)-5.\left(x+1\right)=143\)
\(\Rightarrow\left(x+1\right).\left(2y-5\right)=143\)
\(\Rightarrow\left(x+1\right)\) và \(\left(2y-5\right)\inƯ\left(143\right)=\left\{1;11;13;143\right\}\)
Ta có bảng giá trị:
x+1 | 1 | 11 | 13 | 143 |
2y-5 | 143 | 13 | 11 | 1 |
x | 0 | 10 | 12 | 142 |
y | 74 | 9 | 8 | 3 |
Vậy \(\left(x;y\right)=\left\{\left(0;74\right);\left(10;9\right);\left(12;8\right);\left(142;3\right)\right\}\)
Chúc bạn học tốt! (Trời mk mất gần 1 tiếng bài này! )
Cần gấp, cần gấp
Tìm tất cả cặp số x,y thỏa mãn: x^2 + 2y^2 +2xy - 5x-5y= -6, để x+y là số nguyên
x² + 2xy + 2y² - 5x - 5y = -6
<=> x² + 2xy + y² - 5(x + y) + y² = -6
<=> (x + y)² - 5(x + y) = - 6 - y²
<=> (x + y)² - 5(x + y) + 25/4 = 25/4 - 6 - y²
<=> (x + y - 5/2)² = (1 - 4y²)/4
<=> (2x + 2y - 5)² = 1 - 4y²
<=> (2x + 2y - 5)² + 4y² = 1 (*)
Từ (*) ta thấy nếu x, y là các số thực thì có vô số cặp (x, y) thỏa.
có thể đề ghi thiếu, ở đây tôi tìm các cặp (x, y) nguyên
*nếu y ≠ 0 thì 4y² ≥ 4, không thỏa (*)
*Vậy y = 0, thay vào (*):
(2x - 5)² = 1
+2x - 5 = -1 => x = 2
+2x - 5 = 1 => x = 3
Vậy có hai cặp nguyên (x, y) thỏa là: (2, 0) và (3, 0)
Bài 1:Tìm các cặp số (x, y) nguyên biết :
a,6xy + 4x - 3y = 8 b,2xy - x + 2y - 13 = 0 c,2xy - 6X + 3 + y - 13 = 0
giúp mình với
mình cảm ơn
6xy+4x-3y=8
=> 6xy -3y=8-4x
=>3y(2x-1)= -2(2x-1) +6
=>(2x-1)(3y+2)=6
mà x,y thuộc Z =>(2x-1),(3y+2) thuộc Z =>(2x-1),(3y+2) thuộc U(6) xong giải ra bình thường nhé mấy câu sau tương tự
Ttìm cặp số x, y nguyên thỏa mãn 5x^2 +y^2 -2xy+2x-6y+1<0
Tìm cặp số x,y thỏa 5x^2 +2y+y^2 -4x-40=0
Giải hệ phương trình sau:
xy(x-y)=2
9xy(3x-y)+6=26x^3 -2y^3
5x2+2y+y2-4x-40=0
△=(-4)2-4.5.(2y+y2-40)
△=16-40y-20y2+800
△=-(784+40y+20y2)
△=-(32y+8y+16y2+4y2+16+4+764)
△=-[(4y+4)2+(2y+2)2+764]<0
=>PHƯƠNG TRÌNH VÔ NGHIỆM.
Tìm cặp số nguyên (x,y) thỏa mãn
xy-7x-2y=15
x2+5x-2xy-10y-11=0
a)xy-7x-2y=15
=>x(y-7)-2y=15
=>x(y-7)-2y+14=15+14
=>x(y-7)-2(y-7)=29
=>(x-2)(y-7)=29
=>x-2 và y-7 thuộc Ư(29)={1;-1;29;-29}
Với x-2=1 =>x=3 <=> y-7=29 =>y=36
Với x-2=-1 =>x=1 <=>y-7=-29 =>y=-22
Với x-2=29 =>x=31 <=>y-7=1 =>y=8
Với x-2=-29 =>x=-27 <=>y-7=-1 =>y=6
Vậy .....
b)x2+5x-2xy-10y-11=0
<=>x2+5x-2xy-10y=11
<=>(x2-2xy)+(5x-10y)=11
<=>x(x-2y)+5(x-2y)=11
<=>(x+5)(x-2y)=11
=>x+5 và x-2y thuộc Ư(11)={1;-1;11;-11}
Xét x+5=1 =>x=-4 <=>x-2y=11 <=>-4-2y=11 =>y=\(-7\frac{1}{2}\left(loai\right)\)
Xét x+5=11 =>x=6 <=>x-2y=1 <=>6-2y=1 =>y=\(2\frac{1}{2}\left(loai\right)\)
Xét x+5=-1 =>x=-6 <=>-6-2y=-11 =>y=\(2\frac{1}{2}\left(loai\right)\)
Xét x+5=-11 =>x=-16 <=>-16-2y=-11 =>y=\(-2\frac{1}{2}\left(loai\right)\)
Vậy ko có giá trị x,y nguyên nào thỏa mãn
Bài 1:Tìm các cặp số (x, y) nguyên biết :
a,(3-x).(4y+1)=20 b,x(y + 2) + 2y =6 c,6xy + 4x - 3y = 8
d,2xy - x + 2y - 13 = 0 e,2xy - 6X + 3 + y - 13 = 0
giúp mình với
mình cảm ơn
a, (3 - \(x\))(4y + 1) = 20
Ư(20) = { -20; -10; -5; -4; -2; -1; 1; 2; 4; 5; 10; 20}
Lập bảng ta có:
\(3-x\) | -20 | -10 | -5 | -4 | -2 | -1 | 1 | 2 | 4 | 5 | 10 | 20 |
\(x\) | 23 | 13 | 8 | 7 | 5 | 4 | 2 | 1 | -1 | -2 | -7 | -17 |
4\(y\) + 1 | -1 | -2 | -4 | -5 | -10 | -20 | 20 | 10 | 5 | 4 | 2 | 1 |
\(y\) | -1/2 | -3/4 | -5/4 | -6/4 | -11/4 | -21/4 | 19/4 | 9/4 | 1 | 3/4 | 1/4 | 0 |
Vậy các cặp \(x;y\) nguyên thỏa mãn đề bài là:
(\(x;y\)) =(-1; 1); (-17; 0)
b, \(x\left(y+2\right)\)+ 2\(y\) = 6
\(x\) = \(\dfrac{6-2y}{y+2}\)
\(x\in\) Z ⇔ 6 - \(2y⋮\) \(y\) + 2 ⇒-(2y + 4) +10 ⋮ \(y\) + 2 ⇒ -2(\(y\)+2) +10 ⋮ \(y\)+2
⇒ 10 ⋮ \(y\) + 2
Ư(10) = { -10; -5; -2; -1; 1; 2; 5; 10}
Lập bảng ta có:
\(y+2\) | -10 | -5 | -2 | -1 | 1 | 2 | 5 | 10 |
\(y\) | -12 | -7 | -4 | -3 | -1 | 0 | 3 | 8 |
\(x=\) \(\dfrac{6-2y}{y+2}\) | -3 | -4 | -7 | -12 | 8 | 3 | 0 | -1 |
Theo bảng trên ta có các cặp \(x;y\)
nguyên thỏa mãn đề bài lần lượt là:
(\(x;y\) ) =(-3; -12); (-4; -7); (-12; -3); (8; -1); (3; 0); (0;3 (-1; 8)