Tìm b ∈ ℤ sao cho:
b - 4 là ước số của 5b - 4
Tìm a ∈ ℤ sao cho:
a - 3 là ước số của 4a - 23
a - 3 là ước của 4a - 23
=> 4a - 23 chia hết cho a - 3
=> 4a - 12 - 11 chia hết cho a - 3
=> 4.(a - 3) - 11 chia hết cho a - 3
Mà 4.(a - 3) chia hết cho a - 3
=> 11 chia hết cho a - 3
=> a - 3 thuộc Ư (11) = {-11; -1; 1; 11}
=> a thuộc {-8; 2; 4; 14}.
Tìm b ∈ ℤ sao cho: 5b - 45 là bội số của b - 7
5b - 45 là bội số của b - 7
=> 5b - 45 chia hết cho b - 7
=> 5b - 35 - 10 chia hết cho b - 7
=> 5( b - 7 ) - 10 chia hết cho b - 7
Vì 5( b - 7 ) chia hết cho b - 7
=> 10 chia hết cho b - 7
=> b - 7 ∈ Ư(10) = { ±1 ; ±2 ; ±5 ; ±10 }
tự tính nốt nhé :))
\(B\in5\)
Chúc bạn học tốt!
Tìm b ∈ ℤ sao cho:
b + 3 là ước số của 6b + 31
b + 3 là ước số của 6b + 31
\(\Rightarrow6b+31⋮b+3\)
\(\Rightarrow6\left(b+3\right)+13⋮b+3\)
\(\Rightarrow13⋮b+3\)
\(\Rightarrow b+3\in\left\{13,1,-13,-1\right\}\)
\(\Rightarrow b\in\left\{10,-2,-16,-4\right\}\)
Tìm b ∈ ℤ sao cho:
b - 3 là ước số của 8b - 14
Ta có: b - 3 \(\in\)Ư(8b - 14)
<=> 8b - 14 \(⋮\)b - 3
<=> 8(b - 3) + 10 \(⋮\)b - 3
<=> 10 \(⋮\)b - 3
<=> b - 3 \(\in\)Ư(10) = {1; 2; 5; 10; -1; -2; -5; -10}
Lập bảng :
b - 3 | 1 | 2 | 5 | 10 | -1 | -2 | -5 | -10 |
b | 4 | 5 | 8 | 13 | 2 | 1 | -2 | -7 |
Vậy ....
Giải
b - 3 là ước số của 8b - 14.
\(\Rightarrow\left(8b-14\right)⋮\left(b-3\right)\)
\(\Rightarrow\left(8b-24+10\right)⋮\left(b-3\right)\)
\(\Rightarrow\left[8\left(b-3\right)+10\right]⋮\left(b-3\right)\)
Vì \(\left[8\left(b-3\right)\right]⋮\left(b-3\right)\) nên \(10⋮\left(b-3\right)\)
\(\Leftrightarrow b-3\inƯ\left(10\right)=\left\{\pm1;\pm2;\pm5;\pm10\right\}\)
Ta có bảng sau :
\(b-3\) | \(1\) | \(-1\) | \(2\) | \(-2\) | \(5\) | \(-5\) | \(10\) | \(-10\) |
\(b\) | \(4\) | \(2\) | \(5\) | \(-1\) | \(8\) | \(-2\) | \(13\) | \(-7\) |
Vậy \(b\in\left\{4;2;5;-1;8;-2;13;-7\right\}\)
Câu hỏi của Nguyễn Công Minh Hoàng - Toán lớp 8 - Học toán với OnlineMath
GIUPS MIK NHANH NHA
sorry ko biết đừng giận nha
Ta có: 5b−23⋮b−6
⇔5b−30+7⋮b−6
mà 5b−30⋮b−6
nên 7⋮b−6
⇔b−6∈Ư(7)
⇔b−6∈{1;−1;7;−7}
hay b∈{7;5;13;−1}
Vậy: b∈{7;5;13;−1}
Tìm b ∈ ℤ sao cho:
b - 7 là ước số của 3b - 27
Đáp số b ∈ {
b thuộc các số 6;8;5;9;4;10;1;13
Ta có b-7 là ước của 3b-27
=>3b-27 chia hết cho b-7
=>3b-21-6 chia hết cho b-7
=>3(b-7)-6 chia hết cho b-7
=>6 chia hết cho b-7
=>b-7 là ước của 6
Ư(6)=-1;1-2;2;-3;3;-6;6
b-7=-1=>b=6
b-7=1=>b=8
b-7=-2=>b=5
b-7=2=>b=9
b-7=-3=>b=4
b-7=3=>b=10
b-7=-6=>b=1
b-7=6=>b=13
Vậy b=6;8;5;9;4;10;1;13 thì b-7 là ước số của 3b-27
b-7 là ước số của 3b-27=>3b-27 chia hết cho b-7
=>3(b-7)-6 chia hết cho b-7
=>b-7 thuộc ước của 6
=>b thuộc{1;4;5;6;8;9;10;13}
Tìm b ∈ ℤ sao cho:
b - 7 là ước số của 3b - 27
Đáp số b ∈ {
3b - 27 chia hết ho b - 7
=> 3n - 21 - 6 chia hết cho b - 7
=> 3(b - 7) - 6 chia hết cho b - 7
=> 6 chia hết cho b - 7
...
3b - 27 = 3b - 21 - 6 = 3(b - 7) - 6
Vì \(3(b-7)⋮b-7\)\(\Rightarrow6⋮b-7\)\(\Rightarrow b-7\inƯ(6)\)\(\Rightarrow b-7\in\left\{1;2;3;6;-1;-2;-3;-6\right\}\)\(\Rightarrow b\in\left\{8;9;10;13;6;5;4;1\right\}\)
Học tốt!