Hãy biểu diễn hai số tự nhiên không chia hết cho 3 khi chia cho 3 có dư số khác nhau
Hãy biểu diễn 2 so tự nhiên không chia hết cho 3 khi chia cho 3 có số dư khác nhau
hay biểu diễn hai số tự nhiên không chia hết cho 3khi chia cho 3 có số dư khác nhau
1 : 3 = 0 dư 1
2 : 3 = 0 dư 2
3 : 3 = 1 dư 0 = 1
hay biểu diễn ba số tự nhiên khong chia hết cho 4 khi chia cho 4 có số dư khác nhau
5 : 4 = 1 dư 1
6 : 4 = 1 dư 2
7 : 4 = 1 dư 3
8 : 4 = 2 dư 0 = 2
Cho hai số tự nhiên a,b không chia hết cho 3. Khi chia a và b cho 3 thì có hai số dư khác nhau.
Chứng minh rằng: ( a+b ) chia hết cho 3Nếu là số dư khác nhau thì a:3 dư 1,b:3 dư 2 hoặc ngược lại.
Nếu vậy thì (a+b) chia hết cho 3 vì số dư là 1+2=3 chia hết cho 3
Đây chỉ là mình nghĩ sao viết vậy thôi nha!
Xét các trường hợp:
TH1: a = 3k + 1; b = 3k + 2. ( k là số tự nhiên)
=> a + b = 3k + 1 + 3k + 2 = 6k + 3 = 3.( k + 1 )
Vì 3 chia hết cho 3 => 3.( k + 1 ) chia hết cho 3 hay a + b chia hết cho 3
TH2: a = 3k + 2; b = 3k + 1. ( k là số tự nhiên)
=> a + b = 3k + 2 + 3k + 1 = 6k + 3 = 3.( k + 1 )
Vì 3 chia hết cho 3 => 3.( k + 1 ) chia hết cho 3 hay a + b chia hết cho 3
Vậy ( a + b ) chia hết cho 3
Chứng tỏ rằng nếu hai số tự nhiên không phải bội của 3 mà có số dư khác nhau khi chia cho thì hiệu của chúng chia hết cho 3
Chứng tỏ rằng nếu hai số tự nhiên không phải là bội của 3 ma có số dư khác nhau khi chia cho 3 thì hiệu của chúng chia hết cho 3
Khi chia số tự nhiên a cho 12 ta có số dư là 8
1,Hãy biểu diễn số a
2,Số a có chia hết cho các số sau không 2,3,4,6
giúp e với ạ:))
Câu 1. Một số tự nhiên a chia cho 30, được số dư là 18.
a) Hãy biểu diễn số a.
b) Hỏi a có chia hết cho 2, cho 3, cho 5 và cho 6 không?
Lời giải:
a. $a=30k+18$ với $k$ là số tự nhiên bất kỳ.
b.
$a=30k+18=2(15k+9)\vdots 2$
$a=30k+18=3(10k+6)\vdots 3$
$a=30k+18=5(6k+3)+3\not\vdots 5$
$a=30k+18=6(5k+3)\vdots 6$
Hai số tự nhiên a và b không chia hết cho a khi chia a và b cho 3 thì có 2 số dư khác nhau
Chứng minh rằng (a+b):3