CMR nếu a/b=c/d thì a^2016+3b^2016/c^2016+3d^2016=(a^2+2b^2/c^2+2d^2)^1008
CMR nếu a/b=c/d thì a^2016+3b^2016/c^2016+3d^2016=(a^2+2b^2/c^2+2d^2)^1008
Chứng minh rằng nếu\(B:\frac{a^{2016}+3b^{2016}}{c^{2016}+3d^{2016}}=\left(\frac{a^2+2b^2}{c^2+2d^2}\right)^2\)
Chứng minh rằng nếu a/b=c/d\(a,\frac{a^2+2c^2}{b^2+2d^2}=\left(\frac{a+3c}{b+3d}\right)^2\) \(\frac{a^{2016}+3b^{2016}}{c^{2016}+3d^{2016}}=\left(\frac{a^2+2b^2}{c^2+2d^2}\right)^2\)
cho 4 số a,b,c,d > o thỏa mãn a^4/b+c^4/d=1/b+d và a^2+c^2=1. chứng minh rằng a^2016/b^1006+c^2016/d^1008=2/(b+d)^1008
Cho a/b=c/d Chứng minh rằng
a) a+2c/b+2d= a-3c/b-3d
b) (a-c)4/(b-d)4
c) a2016+c2016/b2016= (a-c)2016/(b-d )2016
Đặt a/b=c/d=k
khi đó a=bk,c=dk
thay vào a+2c/b+2d ta có
bk+2dk/b+2d
=k(b+2d)/b+2d
=k 1
thay vào a-3c/b-3d ta có
bk-3dk/b-3d
=k(b-3d)/b-3d
=k 2
từ 1 và 2 =>a+2c/b=2d=a-3c/b-3d
Các câu còn lại tương tự
Cho a,b,c,d\(\in\)N* ,a2+c2=1 và \(\frac{a^4}{b}+\frac{c^4}{d}=\frac{1}{b+d}\)CMR:
\(\frac{a^{2016}}{b^{1008}}+\frac{c^{2016}}{d^{1008}}=\frac{2}{\left(b+d\right)^{1008}}\)
cho x^2/a^2 + y^2/b^2 + z^2/c^2 =x^2+y^2+z^2/a^2+b^2+c^2
CMR x^2016/a^2016 + y^2016/b^2016 +z^2016/c^2016 = x^2016+y^2016+z^2016/a^2016+b^2016+c^2016
a^2016+b^2016+c^2016=a^1008. b^1008+b^1008. c^1008+c^1008. a^1008.
Tính A=(a-b)^3+(b-c)^4+(c-a)^2015
CHO A/B=C/D CHỨNG MINH RẰNG
\(\frac{\left(a-c\right)^4}{\left(b-d\right)^4}=\frac{5a^4+7c^4}{5b^4+7d^4}\)
\(\frac{a+2c}{b+2d}=\frac{a-3c}{b-3d}\)
\(\frac{a^{2016}+c^{2016}}{b^{2016}+d^{2016}}=\frac{\left(a-c\right)^{2016}}{\left(b-d\right)^{2016}}\)
AI LÀM ĐƯỢC CÂU NÀO CŨNG ĐC,GIÚP MÌNH VS GẤP LẮM,THANKS
a, \(\frac{a}{b}=\frac{c}{d}=\frac{a-c}{b-d}\Rightarrow\frac{a^4}{b^4}=\frac{c^4}{d^4}=\frac{\left(a-c\right)^4}{\left(b-d\right)^4}\) (1)
\(\frac{a^4}{b^4}=\frac{c^4}{d^4}=\frac{5a^4}{5b^4}=\frac{7c^4}{7d^4}=\frac{5a^4+7c^4}{5b^4+7d^4}\)(2)
Từ (1) và (2) => đpcm
b, \(\frac{a}{b}=\frac{c}{d}=\frac{2c}{2d}=\frac{a+2c}{b+2d}\) (3)
\(\frac{a}{b}=\frac{c}{d}=\frac{3c}{3d}=\frac{a-3c}{b-3d}\) (4)
Từ (3) và (4) => đpcm
c, làm giống câu a
a) ta có \(\frac{a}{b}=\frac{c}{d}=\frac{a+2c}{b+2d}\left(1\right)\)
\(\frac{a}{b}=\frac{c}{d}=\frac{a-3c}{b-3d}\left(2\right)\)
(1) và (2) => \(\frac{a+2c}{b+2d}=\frac{a-3c}{b-3d}\)
Tương tự \(\left(\frac{a}{b}\right)^4=\left(\frac{c}{d}\right)^4=\left(\frac{a-c}{b-d}\right)^4\left(1\right)\)
\(\left(\frac{a}{b}\right)^4=\left(\frac{c}{d}\right)^4=\frac{5a^4+7c^4}{5b^4+7d^4}\left(2\right)\)
=> \(\left(\frac{a-c}{b-d}\right)^4=\frac{5a^4+7c^4}{5b^4+7d^4}\)