\(\frac{1}{1\times2}+\frac{1}{2\times3}+...+\frac{1}{99\times100}\)
\(\frac{1}{1\times2}+\frac{1}{2\times3}+...+\frac{1}{99\times100}\)
\(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)
\(=1-\frac{1}{100}=\frac{99}{100}\)
\(\frac{1}{1\times2}+\frac{1}{2\times3}+...+\frac{1}{99\times100}\)
\(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)
\(=1-\frac{1}{100}=\frac{99}{100}\)(Nhớ k cho mình với nhá!)
1\(\frac{1}{1\times2}+\frac{1}{2\times3}+\frac{1}{3\times4}+............+\frac{1}{99\times100}+\frac{1}{100\times101}\)
\(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{99}-\frac{1}{100}+\frac{1}{100}-\frac{1}{101}.\)
\(=\frac{1}{1}-\frac{1}{101}\)
\(=\frac{101}{101}-\frac{1}{101}=\frac{100}{101}\)
\(\frac{1\times2}{2\times3}+\frac{2\times3}{3\times4}+\frac{3\times4}{4\times5}+...+\frac{98\times99}{99\times100}\)
\(=\frac{1.2}{99.100}\)
\(=\frac{2}{9900}=\frac{1}{4950}\)
Tinh gia tri bieu thuc: A=\(\frac{1}{1\times2}+\frac{1}{2\times3}+...+\frac{1}{99\times100}\)
\(A=\frac{1}{1x2}+\frac{1}{2x3}+...+\frac{1}{99.100}\)
\(A=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)
\(A=\frac{1}{1}-\frac{1}{100}=\frac{99}{100}\)
\(A=\frac{1}{1\times2}+\frac{1}{2\times3}+...+\frac{1}{99\times100}\)
\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)
\(A=1-\frac{1}{100}\)
\(A=\frac{99}{100}\)
\(\Rightarrow A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+....+\frac{1}{99}-\frac{1}{100}\)
\(\Rightarrow A=1-\frac{1}{100}\)
\(\Rightarrow A=\frac{99}{100}\)
tinh gia tri cua bieu thuc \(\frac{1}{1\times2}+\frac{1}{2\times3}+........+\frac{1}{99\times100}\)
\(\frac{1}{1x2}+\frac{1}{2x3}+...+\frac{1}{99x100}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}=1-\frac{1}{100}=\frac{99}{100}\)
\(y=\frac{1\times100+2\times99+3\times98...+99\times2+100\times1}{1\times2+2\times3+3\times4+...+99\times100+100\times101}=?\)
Tinh gia tri bieu thuc: A = \(\frac{1}{1\times2}+\frac{1}{2\times3}+...+\frac{1}{99\times100}\)
\(A=\frac{1}{1x2}+\frac{1}{2x3}+...+\frac{1}{99x100}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)
\(=1-\frac{1}{100}\)
\(=\frac{99}{100}\)
tinh gia tri bieu thuc\(\frac{1}{1\times2}+\frac{1}{2\times3}+...+\frac{1}{99\times100}\)
\(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}=1-\frac{1}{100}=\frac{99}{100}\)