cho em hỏi câu:1/101+1/102+...+1/200 bé hơn 1 thì làm thế nào
Cho G =1/100^2+1/101^2+1/102^2+....+1/198^2+1/199^2 . CMR 1/200 bé hơn G bé hơn 1/99
Giúp mk với nha.
Ta có : \(\frac{1}{100^2}< \frac{1}{99.100}\)
\(\frac{1}{101^2}< \frac{1}{100.101}\)
\(\frac{1}{102^2}< \frac{1}{101.102}\)
...
\(\frac{1}{198^2}< \frac{1}{197.198}\)
\(\frac{1}{199^2}< \frac{1}{198.199}\)
\(\Rightarrow G< \frac{1}{99.100}+\frac{1}{100.101}+\frac{1}{101.102}+...+\frac{1}{197.198}+\frac{1}{198.199}\)
\(\Rightarrow G< \frac{1}{99}-\frac{1}{100}+\frac{1}{100}-\frac{1}{101}+\frac{1}{101}-\frac{1}{102}+...+\frac{1}{198}-\frac{1}{199}\)
\(\Rightarrow G< \frac{1}{99}-\frac{1}{199}< \frac{1}{99}\)(1)
Ta có : \(\frac{1}{100^2}>\frac{1}{100.101}\)
\(\frac{1}{101^2}>\frac{1}{101.102}\)
\(\frac{1}{102^2}>\frac{1}{102.103}\)
...
\(\frac{1}{199^2}>\frac{1}{199.200}\)
\(\Rightarrow G>\frac{1}{100.101}+\frac{1}{101.102}+\frac{1}{102.103}+...+\frac{1}{199.200}\)
\(\Rightarrow G>\frac{1}{100}-\frac{1}{101}+\frac{1}{101}-\frac{1}{102}+\frac{1}{102}-\frac{1}{103}+...+\frac{1}{199}-\frac{1}{200}\)
\(\Rightarrow G>\frac{1}{100}-\frac{1}{200}=\frac{1}{200}\)(2)
Từ (1) và (2)
\(\Rightarrow\frac{1}{200}< G< \frac{1}{99}\)
Vậy \(\frac{1}{200}< G< \frac{1}{99}\).
Chứng minh
1/101+1/102+1/103+...+1/199+1/200 bé hơn 1
\(\frac{1}{101}+\frac{1}{102}+\frac{1}{103}+...+\frac{1}{199}+\frac{1}{200}< \frac{1}{100}+\frac{1}{100}+\frac{1}{100}+...+\frac{1}{100}\)
100 phân số \(\frac{1}{100}\)
\(< \frac{1}{100}.100\)
\(< 1\left(đpcm\right)\)
\(\frac{1}{101}+\frac{1}{102}+\frac{1}{103}+.....+\frac{1}{199}+\frac{1}{200}\)
\(< \frac{1}{100}+\frac{1}{100}+.....+\frac{1}{100}\)( 100 phân số )
\(< \frac{1}{100}.100=\frac{100}{100}=1\)
Vậy : \(\frac{1}{101}+\frac{1}{102}+.....+\frac{1}{200}< 1\)
CTR
1 phần 101+1 phần 102+1 phần 103 +..+1 phần 199 +1 phần 200 bé hơn 1
Giúp mình 5 câu này nhé . Ai làm đc cả 5 câu cho 10 điểm luôn ( Nếu đúng )
1/Cho A= 1/101+1/102+1/103+...+1/150
a) So sánh 1/150 với 1/101;...; 1/150 với 1/149 <----------------KO PHẢI LÀM
b) Chứng minh : A > 1/3
2/ Cho A= 1/101+1/102+1/103+...+1/200
a) So sánh: 1/101+1/102+...+1/150với 1/3 và 1/151+1/152+...+1/200 với 1/4
b) Chứng minh: A > 7/12
3/Cho A= 1/101+1/102+...+1/200
Chứng minh: 1/2 < A < 1
4/ Cho A = 1/101+1/102+1/103+...+1/150. Chứng minh: 1/3 < A < 1/2
5/ Chứng minh: 1/5+1/14+1/28 < 1/3
CHÚC CÁC BẠN THÀNH CÔNG
CÁC BẠN CHỈ CẦN GIÚP MÌNH ÍT NHẤT 2 CÂU THÔI
So sánh A= 1/101+1/102+1/103+1/104+...+1/199+1/200 với 1/2.
Bạn nào giúp mình với mai mình kiểm tra bài này rồi.
Bạn nào gửi câu trả lời nhanh nhất thì mình sẽ tick cho
\(A=\frac{1}{101}+\frac{1}{102}+\frac{1}{103}+...+\frac{1}{199}+\frac{1}{200}\)
Ta thấy các phân số \(\frac{1}{101};\frac{1}{102};\frac{1}{103};...;\frac{1}{198};\frac{1}{199}\)đều lớn hơn \(\frac{1}{200}\)
\(\Rightarrow A>\frac{1}{200}+\frac{1}{200}+\frac{1}{200}+..+\frac{1}{200}+\frac{1}{200}\)(có 100 số hạng \(\frac{1}{200}\))
\(\Leftrightarrow A>\frac{100}{200}\)
\(\Leftrightarrow A>\frac{1}{2}\)
Cho A = 1/101+1/102+...+1/200
1, So sánh: 1/101 với 1/102;...;1/101 với 1/200
2, Chứng minh rằng : A > 1
1/Bạn thấy trong phép chia thì phép nào có số chia lớn hơn thì thương nhỏ hơn, vì vậy ps có mẫu lớn hơn thì nhỏ hơn.
2/ Ta có: Số số hạng của tổng là 200
\(\frac{1}{101}>\frac{1}{200}\)
\(\frac{1}{102}>\frac{1}{200}\)
\(...\)
\(\frac{1}{199}>\frac{1}{200}\)
\(\Rightarrow\frac{1}{101}+\frac{1}{102}+...+\frac{1}{199}>\frac{1}{200}+...+\frac{1}{200}\)
\(\Rightarrow\frac{1}{101}+\frac{1}{102}+...+\frac{1}{199}+\frac{1}{200}>\frac{1}{200}+...+\frac{1}{200}\)(mỗi bên đều 200 số hạng)
\(\Rightarrow A>\frac{1}{200}.200\)
\(\Rightarrow A>1\)
Câu hỏi :Chứng minh
\(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{199}-\frac{1}{200}=\frac{1}{101}+\frac{1}{102}+\frac{1}{103}+...+\frac{1}{200}\)
Biến đổi vế phải của đẳng thức :
\(\frac{1}{101}+\frac{1}{102}+...+\frac{1}{200}\)
\(=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{199}+\frac{1}{200}-1-\frac{1}{2}-\frac{1}{3}-\frac{1}{4}-...-\frac{1}{100}\)
\(=1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{199}+\frac{1}{2}+\frac{1}{4}+...+\frac{1}{200}-2\left[\frac{1}{2}+\frac{1}{4}+...+\frac{1}{200}\right]\)
\(=1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{199}-\frac{1}{2}-\frac{1}{4}-...-\frac{1}{200}\)
Câu hỏi : Cho phân số B = \(\frac{10n}{5n-3}\)với n nguyên hãy tìm n thuộc Z để B là số nguyên.
Câu hỏi : Cho D = 1 / 101 + 1 / 102 + 1 / 103 + .... + 1 / 200 . Chứng minh 1/2 < D < 1
LM IK RỒI MINK TICK CHO NHA MN
để 10n/5n-3 là số nguyên(n thuộc Z) suy ra 10n chia hết cho 5n-3
suy ra 5n-3 chia hết cho 5n-3 suy ra 2(5n-3) hay10n-6 chia hết cho 5n-3
suy ra 10n-(10n-6) chia hết cho 5n-3
suy ra 6 chia hết cho 5n-3
suy ra 5n-3 thuộc ư(6)={2;-3}
5n thuộc {5;0}
n thuộc {1;0}
Ta có 1/101+1/102+...+1/200>1/200+1/200+...+1/200(có 100 phân số 1/200)=1/2
suy ra
1/2<D
Ta có 1/101+1/102+...+1/200<1/100+1/100+...+1/100(100 phân số 1/100)=1
Vậy 1/2<D<1(thỏa mãn điều kiện chứng minh)
Cho A = 1/101 + 1/102 + 1/103 + ... + 1/200
1/ So sánh 1/101 với 1/102 ; ... ; 1/101 với 1/200
2/ Chứng minh: A <1
Giúp mình đi mà :v
1/ Ta có : tất cả các p/s ở tổng A đều có tử bằng 1 . Mà MS 101 < 102 ; 103 ; ... ; < 200 .
Nên 1/101 là p/s lớn nhất ( lớn hơn 1/102 ; 1/103 ; ... ; 1/200 )
2/ Tổng A có phân số là : ( 200 - 101 ) : 1 + 1 = 100 (phân số ) .
Nếu thay cả 100 p/s bằng p/s lớn nhất : 1/101 thì tổng A = 1/101 . 100 = 100/101 < 1 .
=> 1/101 + 1/102 + 1/103 + ... + 1/200 ( 100p/s ) < 1/101 + 1/101 + 1/101 + ... + 1/101 (100 p/s ) < 1 .
Vậy : A < 1