CMR phân số : 5n+3/3n+2 ( n thuộc Z ) là phân số tối giản
bạn nào làm nhanh nhất mình sẽ tick cho
CMR phân số : 5n+3/3n+2 là phân số tối giản với n thuộc Z
Gọi d = (5n + 3 ; 3n + 2) (d thuộc N)
=> (5n + 3) chia hết cho d và (3n + 2) chia hết cho d
=> 5.(3n + 2) - 3.(5n + 3) chia hết cho d
=> 1 chia hết cho d
=> d = 1 (vì d thuộc N)
=> ƯCLN(5n + 3 ; 3n + 2) = 1
=> Phân số 5n+3/3n+2 tối giản với mọi n thuộc N
ai tích cho mk với
c) gọi d là ưcln của 3n+2 và 5n+3, ta có
(3n+2)-(5n+3) chia hết cho d
5(3n+2)-3(5n+3) chia hết cho d
15n+10-15n-9 chia hết cho d
15n-15n+10-9 chia hết cho d
1 chia hết cho d => d=1
Vậy 5n+3/3n+2 là phân số tối giản
bài 1: với mọi số tự nhiên n chứng minh các phân số sau là phân số tối giản
A=2n+1/2n+2
B=2n+3/3n+5
Bài 2:
a) Cho phân số: N=5n+7/2n+1( n thuộc Z, n khác -1/2). Tìm n để N là phân số tối giản
b) Cho phân số: P=5-2n/4n+5 ( n thuộc Z, n khác -5/4). Tìm n để P là phân số tối giản
giúp mk với
mk sẽ tick cho!!
b1 :
a, gọi d là ƯC(2n + 1;2n +2)
=> 2n + 1 chia hết cho d và 2n + 2 chia hết cho d
=> 2n + 2 - 2n - 1 chia hết cho d
=> 1 chia hết cho d
=> d = 1
=> 2n+1/2n+2 là ps tối giản
Bài 1: Với mọi số tự nhiên n, chứng minh các phân số sau là phân số tối giản:
A=2n+1/2n+2
Gọi ƯCLN của chúng là a
Ta có:2n+1 chia hết cho a
2n+2 chia hết cho a
- 2n+2 - 2n+1
- 1 chia hết cho a
- a= 1
Vậy 2n+1/2n+2 là phân số tối giản
B=2n+3/3n+5
Gọi ƯCLN của chúng là a
2n+3 chia hết cho a
3n+5 chia hết cho a
Suy ra 6n+9 chia hết cho a
6n+10 chia hết cho a
6n+10-6n+9
1 chia hết cho a
Vậy 2n+3/3n+5 là phân số tối giản
Mình chỉ biết thế thôi!
#hok_tot#
các bn giải hộ mk bài 2 ik
thật sự mk đang rất cần nó!!!
Bài 1: Chứng minh phân số 3n+1/4n+1 tối giản với n thuộc Z( số nguyên)
Bạn nào trả lời đúng, nhanh mình sẽ tick
Gọi d là ước chung lớn nhất của 3n+1 và 4n+1 (d thuộc N*)
Ta có : 3n+1 chia hết cho d
4n +1 chia hết cho d
==> (4n+1) - (3n+1) chia hết cho d
Hay: n chia hết cho d
==> 3n chia hết cho d
mà 3n+1 chia hết cho d (cmt)
==> (3n+1) - 3n chia hết cho d
Hay: 1 chia hết cho d
mà d thuộc N*
==> d = 1
==> 3n+1 và 4n+1 nguyên tố cùng nhau
==> 3n+1/4n+1 là phân số tối giản. (đpcm)
Gọi d là ƯCLN ( 3n + 1; 4n + 1 )
\(\Rightarrow\)\(3n+1⋮\)d \(\Rightarrow\)\(4.\left(3n+1\right)⋮\)d \(\left(1\right)\)
\(\Rightarrow4n+1⋮\)d \(\Rightarrow\)\(3.\left(4n+1\right)⋮\) d \(\Rightarrow\)\(12n+3⋮\)d \(\left(2\right)\)
Từ \(\left(1\right)\)và \(\left(2\right)\)\(\Rightarrow\)\(\text{[}\left(12n+4\right)-\left(12n+3\right)\text{]}⋮\)d
\(\Rightarrow1⋮\)d \(\Rightarrow\)d = 1
Vì ƯCLN ( 3n + 1 ; 4n + 1 ) = 1 nên \(\frac{3n+1}{4n+1}\)là phân số tối giản
Đặt \(d=ƯC\left(3n+1;4n+1\right)\). Ta có :
\(\hept{\begin{cases}3n+1⋮d\\4n+1⋮d\end{cases}\Leftrightarrow\hept{\begin{cases}12n+4⋮d\\12n+3⋮d\end{cases}}}\Leftrightarrow12n+4-\left(12n+3\right)⋮d\)
\(12n+4-\left(12n+3\right)⋮d\Leftrightarrow12n+4-12n-3⋮d\Leftrightarrow1⋮d\)
\(\Leftrightarrow d\in\left\{1;-1\right\}\)
Vậy \(\frac{3n+1}{4n+1}\)tối giản với \(n\inℤ\) ( đpcm )
1,chứng minh rằng với mọi số tự nhiên n thì các phân số sau là phân số tối giản.
a,2n+3/2n+4
b,3n+2/5n+3
c,21n+4/14n+3
ai nhanh nhất mình tick cho
p 6n 5 3n 2 n thuộc N a CMR phân số p là phân số tối giảnb Với giá trị nào của thì phân số p có giá trị lớn nhấtTRẢ lời ĐÚNG mình TICK nha
Tìm n thuộc Z để :
a) 2n+3/4n+1 là phân số tối giản
b) 3n+2/7n+1 là phân số tối giản
c) 2n+7/5n+3 là phân số tối giản
a) \(\frac{2n+3}{4n+1}\) là phân số tối giản
\(\frac{2n+3}{4n+1}\)= \(\frac{2+3}{4+1}\) =\(\frac{5}{5}\)=1
=>n=1
mình ko chắc là đúng nha
Chứng tỏ phân số \(\frac{3n-2}{4n-3}\) ( với n \(\in\) Z ) là phân số tối giản
GIÚP MIK NHA MIK TICK CHO BN NÀO LÀM ĐÚNG VÀ NHANH NHẤT
trong sách nâng cao và phát triển toán
đặt d là UCLN( 3n - 2;4n - 3)
=> 3n - 2 : d => 12n - 8
chứng minh rằng phân số \(\frac{7n+3}{5n+2}\)(n thuộc N) là phân số tối giản.
ai làm nhanh+đúng mình ticks cho
Giả sử 7n+3 và 5n+2 có nghiệm nguyên tố là d trong đó d>1.
Khi đó 7n+3 chia hết cho d
=> 5(7n+3) chia het cho d hay 35n+15 chc d (1)
5n+2 chc d
=>7(5n+2) chc d
hay 35n+14 chc d (2)
Tu 1 va 2 ta suy ra 35n+15-(35n+14) chc d hay 1 chc d =>d=1(vô lý với giả thiết vậy phân số đã tối giản
Gọi d = ƯCLN(7n + 3; 5n + 2) (\(d\in\)N*)
=> 7n + 3 chia hết cho d; 5n + 2 chia hết cho d
=> 5.(7n + 3) chia hết cho d; 7.(5n + 2) chia hết cho d
=> 35n + 15 chia hết cho d; 35n + 14 chia hết cho d
=> (35n + 15) - (35n + 14) chia hết cho d
=> 35n + 15 - 35n - 14 chia hết cho d
=> 1 chia hết cho d
Mà d thuộc N* => d = 1
=> ƯCLN(7n + 3; 5n + 2) = 1
=> phân số \(\frac{7n+3}{5n+2}\)là phân số tối giản (đpcm)
Gọi UCLN(7n+3;5n+2) là d
Ta có:
[5(7n+3)]-[7(5n+2)] chia hết d
=>[35n+15]-[35n+14] chia hết d
=>1 chia hết d
=>d=1
Vậy ps trên tối giản
p=6n+5/3n+2(n thuộc N)
a) CMR phân số p là phân số tối giản
b) Với giá trị nào của thì phân số p có giá trị lớn nhất
TRẢ lời ĐÚNG mình TICK nha!!!!!!!!!!
Chứng tỏ rằng : phân số 5n+3/3n+2 là phân số tối giản với n thuộc N?
Để phân số 5n+3/3n+2 tối giản với mọi n thuộc N thì ƯCLN của chúng phải bằng 1 và -1.Ta có:
Gọi d là ước chung của (5n + 3) ;( 3n + 2) (d thuộc Z)
=> (5n + 3) chia hết cho d và (3n + 2) chia hết cho d
=> 5.(3n + 2) - 3.(5n + 3) chia hết cho d
=> 1 chia hết cho d
=> d thuộc ( 1; -1)
=> ƯCLN(5n + 3 ; 3n + 2) = 1;-1
=> Phân số 5n+3/3n+2 tối giản với mọi n thuộc N