Xác định a,b,c biết: (ax^2+bx+c)(x+3)=x^3+2x^2−3x với mọi x. Mọi người giúp mình nha mình tick cho
Xác định a, b, c, d biết:
a) (ax^2 + bx +c).(x+3) = x^3 + 2x^2 - 3x với mọi x
b) x^4 + x^3 - x^2 + ax + b = (x^2+x-2).(x^2+cx+d) với mọi x
Giúp mình nha mọi người!
Cho tam thức bậc hai: f(x)=ax^2+bx+c (a khác 0) xác định a,b,c biết f(1)=2;f(3)=8
Cảm ơn nhiều nha!
Xác định a; b biết: x4-3x+2=(x-1)(x3+bx2+ax-2) với mọi x
Mn giúp mình vs! Mik cần gấp! Merci!!
\(\left(x-1\right)\left(x^3+bx^2+ax-2\right)\)
\(=x^4+bx^3+ax^2-2x-x^3-bx^2-ax+2\)
\(=x^4+x^3\left(b-1\right)+x^2\left(a-b\right)-x\left(a+2\right)+2\)
Đồng nhất với đa thức \(x^4-3x+2\), ta có:
\(b-1=0,a-b=0,a+2=3\)
\(\Rightarrow a=1,b=1\)
Chúc bạn học tốt.
xác định a, b , c bt
(ax2+bx+c)(x+3)= x3+2x-3x với mọi x
Ta có \(\left(ax^2+bx+c\right).\left(x+3\right)=ax^3+3ax^2+bx^2+3bx+cx+3c\)
\(=a^3+\left(3a+b\right)x^2+\left(3b+c\right).x+3c\)
Đồng nhất thức hệ số với phương trình x^3+2x-3x ( kiểm tra lại đề )
rồi giải hệ phương trình ra thôi
Xác định các hệ số a, b, c biết rằng với mọi giá trị của x thì:
a) (2x+3).(3x+a)=bx2 +cx-3
b) (ax+1).(x2-bx+3)=2x3-x2+5x+c
a) ( 2x + 3 )( 3x + a ) = bx2 + cx - 3
<=> 2x( 3x + a ) + 3( 3x + a ) = bx2 + cx - 3
<=> 6x2 + 2ax + 9x + 3a = bx2 + cx - 3
<=> 6x2 + ( 2a + 9 )x + 3a = bx2 + cx - 3
Đồng nhất hệ số
=> \(\hept{\begin{cases}b=6\\2a+9=c\\3a=-3\end{cases}}\Rightarrow\hept{\begin{cases}b=6\\c=7\\a=-1\end{cases}}\)
b) ( ax + 1 )( x2 - bx + 3 ) = 2x3 - x2 + 5x + c
<=> ax( x2 - bx + 3 ) + x2 - bx + 3 = 2x3 - x2 + 5x + c
<=> ax3 - abx2 + 3ax + x2 - bx + 3 = 2x3 - x2 + 5x + c
<=> ax3 + ( 1 - ab )x2 + ( 3a - b )x + 3 = 2x3 - x2 + 5x + c
Đồng nhất hệ số
=> \(\hept{\begin{cases}a=2\\1-ab=-1\\3a-b=5\end{cases}}\)và c = 3 => \(\hept{\begin{cases}a=2\\b=1\\c=3\end{cases}}\)
a) Ta có:
\(\left(2x+3\right)\left(3x+a\right)=bx^2+cx-3\)
\(\Leftrightarrow6x^2+\left(2a+9\right)x+3a=bx^2+cx-3\)
Đồng nhất hệ số ta được:
\(\hept{\begin{cases}6=b\\2a+9=c\\a=-1\end{cases}}\Rightarrow\hept{\begin{cases}a=-1\\b=6\\c=7\end{cases}}\)
b) \(\left(ax+1\right)\left(x^2-bx+3\right)=2x^3-x^2+5x+c\)
\(\Leftrightarrow ax^3+\left(1-ab\right)x^2+\left(3a-b\right)x+3=2x^3-x^2+5x+c\)
\(\Rightarrow\hept{\begin{cases}a=2\\1-ab=-1\\3a-b=5\end{cases}}\&c=3\)
\(\Rightarrow\hept{\begin{cases}a=2\\b=1\\c=3\end{cases}}\)
Xác định hệ số a, b, c, biết rằng với mọi x:
a) (2x - 5)(3x + b) = ax2 + x + c
b) (5x - 3)(2x - c) = ax2 + bx + 21
c) (ax + b)(x2 - x - 1) = ax3 + cx2 -1
a) (2x - 5)(3x + b) = ax^2 + x + c
<=> 6x^2 + 2bx -15x -5b = ax^2 + x + c
<=> -ax^2 + 2bx -5b -c = -6x^2 +16x
Đồng nhất hệ số ta có :
+) -a = -6 => a= 6
+) 2b = 16 => b= 8
+) -5b -c= 0 => c= -40
c ) (ax+b)( x^2 -x-1)= ax^3 - cx^2 - 1
<=> ax^3 -ax^2-ax +bx^2-bx-b= ax^3 - cx^2 - 1
<=> (c+b-a)x^2 -(a+b)x -b = -1
Đồng nhất hệ số ta được:
+) c+b-a =0
+) -a-b = 0
+) -b = -1 => b= 1
Thay b=1 ta được a = -1 và c= -2
<p>a) (2x - 5)(3x + b) = ax^2 + x + c<br><=> 6x^2 + 2bx -15x -5b = ax^2 + x + c<br><=> -ax^2 + 2bx -5b -c = -6x^2 +16x<br>Đồng nhất hệ số ta có :<br>+) -a = -6 => a= 6<br>+) 2b = 16 => b= 8<br>+) -5b -c= 0 => c= -40</p>
Xác định các hệ số a,b,c biết:
( ax2 + bx + c) ( x+3)= ( x3 +2x2 -3x) (Mọi x)
1) Cho P = (x+5)(ax^2+bx+25) và Q= x^3 +125 .
Viết P dưới dạng đa thức thu gọn theo lũy thừa giảm dần của biến (cái này ko cần giải )
Với giá trị nào của a , b thì P = Q vs mọi x ( giúp mình )
2. Xác định các hệ số a b c biết:
a.(2x-5)(3x+b) = ax^2+x+c
b. (4x+b )(x^2-x -1 ) = 4x^3 + Cx^3 -1
1. Ta có:
\(P=ax^3+bx^2+25x+5ax^2+5bx+125=ax^3+\left(b+5a\right)x^2+\left(25+5b\right)x+125\)
Vậy để P = Q thì \(\hept{\begin{cases}a=1\\b+5a=0\\25+5b=0\end{cases}\Rightarrow\hept{\begin{cases}a=1\\b=-5\end{cases}}}\)
2. Hoàn toàn tương tự.
1.Cho đa thức f(x)=ax2+bx.Xác định a,b để f(x)-f(x-1)=x với mọi giá trị x. Từ đó suy ra công thức tổng quát 1+2+...+n ( với n là số nguyên dương)
2. Xác định a,b,c,d biết
a) (ax2+bx+c)(x+3)=x3+2x2-3x với mọi x
b) x4+x3-x2+ax+b=(x2+x-2)(x2+cx+d) với mọi x