Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
super xity
Xem chi tiết
Lục Hà Vy
Xem chi tiết
Lightning Farron
20 tháng 10 2016 lúc 20:01

\(a^2+2a+b^2+4b+4c^2-4c+6=0\)

\(\Leftrightarrow\left(a^2+2a+1\right)+\left(b^2+4b+4\right)+\left(4c^2-4c+1\right)=0\)

\(\Leftrightarrow\left(a+1\right)^2+\left(b+2\right)^2+\left(2c-1\right)^2=0\)

\(\begin{cases}\left(a+1\right)^2\ge0\\\left(b+2\right)^2\ge0\\\left(2c-1\right)^2\ge0\end{cases}\)

\(\Rightarrow\left(a+1\right)^2+\left(b+2\right)^2+\left(2c-1\right)^2\ge0\)

\(\Rightarrow\begin{cases}a+1=0\\b+2=0\\2c-1=0\end{cases}\)\(\Rightarrow\begin{cases}a=-1\\b=-2\\c=\frac{1}{2}\end{cases}\)

 

Nguyễn Thị Ngọc Tuyền
Xem chi tiết
Nguyễn Hoàng Minh
27 tháng 7 2016 lúc 21:26

Bạn kiểm tra lại đầu bài đi

Ko có d sao tìm đc:)))))

Đặng Quỳnh Ngân
27 tháng 7 2016 lúc 21:51

= (a+1)2 +(b+2)2 +(2c-1)2 =0

=> a = -1

     b = -2

     c = 1/2

đk cần và đủ giỏi toán IQ>100 + chăm

Trần Thị Thúy
Xem chi tiết
Linh sky mtp
21 tháng 7 2016 lúc 9:17

<=>a^2-2a+b^2+4b+4c^2-4c+1+4+1=0

<=>(a^2-2a+1)+(b^2+4b+4)+(4c^2-4c+1)=0

<=>(a-1)2+(b+2)2+(2c-1)2=0

<=>(a-1)^2=0 hoặc(b+2)^2=0 hoặc (2c-1)^2=0

+,(a-1)^2=0<=>a-1=0<=>a=1

+,(b+2)^2=0<=>b+2=0<=>b=-2

+,(2c-1)^2=0<=>2c-1=0<=>2c=1<=>c=1/2

Nguyễn Thị Ngọc Anh
Xem chi tiết
Hoàng Phúc
19 tháng 7 2016 lúc 14:51

\(a^2-2a+b^2+4b+4c^2-4c+6=0\)

\(=>\left(a^2-2a+1\right)+\left(b^2+4b+4\right)+\left(4c^2-4c+1\right)=0\)

\(=>\left(a^2-2.a.1+1^2\right)+\left(b^2+2.b.2+2^2\right)+\left[\left(2c\right)^2-2.2c.1+1^2\right]=0\)

\(=>\left(a-1\right)^2+\left(b+2\right)^2+\left(2c-1\right)^2=0\left(1\right)\)

Vì : \(\left(a-1\right)^2\ge0\) với mọi a

\(\left(b+2\right)^2\ge0\) với mọi b

\(\left(2c-1\right)^2\ge0\) với mọi c

=>\(\left(a-1\right)^2+\left(b+2\right)^2+\left(2c-1\right)^2\ge0\) với mọi a,b,c

Để (1) thì \(\left(a-1\right)^2=\left(b+2\right)^2=\left(2c-1\right)^2=0=>a=1;b=-2;c=\frac{1}{2}\)

Vậy........

Bảo Châu Trần
Xem chi tiết
Thảo Lê Thị
26 tháng 6 2016 lúc 19:27

\(\Leftrightarrow\left(a^2-2a+1\right)+\left(b^2+4b+4\right)+\left(4c^2-4c+1\right)=0\)

\(\Leftrightarrow\left(a-1\right)^2+\left(b+1\right)^2+\left(2c-1\right)^2=0\)

\(\Leftrightarrow\hept{\begin{cases}a-1=0\\b+1=0\\2c-1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}a=1\\b=-1\\c=\frac{1}{2}\end{cases}}\)

văn hoàng thu trang
Xem chi tiết
Freya
22 tháng 6 2017 lúc 19:34

 a^2-2a+b^2+4b+4c^2-4c+6=0 
<=>(a^2-2a+1)+(b^2+4b+4)+(4c^2-4c+1)=0 
<=>(a-1)^2+(b+2)^2+(2c-1)^2=0 
vi (a-1)^2>=0,(b+2)^2>=0,(2c-1)^2>=0 
=>(a-1)^2+(b+2)^2+(2c-1)^2>=0 
dau = xay ra <=>(a-1)^2=0,(b+2)^2=0,(2c-1)^2=0 
<=>a-1=b+2=2c-1=0 
<=>a=2,b=-2,c=1/2 
vay a=2,b=-2,c=1/2

CHÚC BẠN HỌC GIỎI

Freya
22 tháng 6 2017 lúc 19:33

 a^2-2a+b^2+4b+4c^2-4c+6=0 
<=>(a^2-2a+1)+(b^2+4b+4)+(4c^2-4c+1)=0 
<=>(a-1)^2+(b+2)^2+(2c-1)^2=0 
vi (a-1)^2>=0,(b+2)^2>=0,(2c-1)^2>=0 
=>(a-1)^2+(b+2)^2+(2c-1)^2>=0 
dau = xay ra <=>(a-1)^2=0,(b+2)^2=0,(2c-1)^2=0 
<=>a-1=b+2=2c-1=0 
<=>a=2,b=-2,c=1/2 
vay a=2,b=-2,c=1/2

CHÚC BẠN HỌC GIỎI

Phạm Thị Thùy Linh
Xem chi tiết
Đào Thu Hoà
28 tháng 4 2019 lúc 13:16

\(\left(a^2-2a+1\right)+\left(b^2+4b+4\right)+\left(4c^2-4c+1\right)=0.\)

\(\Leftrightarrow\left(a-1\right)^2+\left(b+2\right)^2+\left(2b-1\right)^2=0\)

Mà \(\left(a-1\right)^2\ge0\forall a\)\(\left(b+2\right)^2\ge0\forall b\),\(\left(2c-1\right)^2\ge0\forall c\)

\(\Rightarrow\hept{\begin{cases}\left(a-1\right)^2=0\\\left(b+2\right)^2=0\\\left(2c-1\right)^2=0\end{cases}\Leftrightarrow}\hept{\begin{cases}a=1\\b=-2\\c=\frac{1}{2}\end{cases}}.\)

Ngọc Nguyễn
28 tháng 4 2019 lúc 13:25

  a2 - 2a + b2 + 4b + 4c2 - 4c + 6 = 0

\(\Leftrightarrow\)a2 - 2a + 1 + b2 + 4b + 4 + 4c2 - 4c2 + 1 = 0

\(\Leftrightarrow\)( a - 1 )2 + ( b + 2 )2 + ( 2c - 1 )2 = 0

\(\Leftrightarrow\)\(\hept{\begin{cases}\left(a-1\right)^2=0\\\left(b+2\right)^2=0\\\left(2c-1\right)^2=0\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}a-1=0\\b+2=0\\2c-1=0\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}a=1\\b=-2\\c=\frac{1}{2}\end{cases}}\)

Vậy a = 1 , b = -2 , c = \(\frac{1}{2}\)

Lê Tài Bảo Châu
5 tháng 5 2019 lúc 8:12

NGọc Nguyễn suy ra 1 phát luôn là sai đấy mà ko có nhân xét gì à

Nguyễn Hoàng Linh Anh
Xem chi tiết
ngonhuminh
31 tháng 10 2016 lúc 17:42

lớp 6 gì kinh thế cái này lớp 8

M=a^3+b^3+ab

M=(a+b)[(a+b)^2-3ab)]+ab=1-2ab 

a+b=1=> b=1-a

M=1-2a(1-a)=1+2a^2-2a

M=2.[(a^2-a+1/2)]+1

-=2(a-1/2)^2+1/2

GTLN của M=1/2 khi a=b=1/2