Rút gọn \(\sqrt{0,25\sqrt{961}+2\sqrt{10}+\sqrt{15}+\sqrt{6}}\)
Rút gọn A=\(\sqrt{0,25\sqrt{961}+2\sqrt{10}+\sqrt{15}+\sqrt{6}}-\sqrt{5}\)
rút gọn biệu thức
\(\sqrt{\frac{\sqrt{961}}{4}+2\sqrt{10}+\sqrt{15}+\sqrt{6}}\)
\(...=\sqrt{\frac{31+8\sqrt{10}+4\sqrt{15}+4\sqrt{6}}{4}}=\frac{\sqrt{\left(2\sqrt{5}\right)^2+\left(2\sqrt{2}\right)^2+\left(\sqrt{3}\right)^2+8\sqrt{10}+4\sqrt{15}+4\sqrt{6}}}{2}\)
\(=\frac{\sqrt{\left(2\sqrt{5}+2\sqrt{2}+\sqrt{3}\right)^2}}{2}=\frac{2\sqrt{5}+2\sqrt{2}+\sqrt{3}}{2}\)
Tính: \(A=\sqrt{0,25.\sqrt{961}+2\sqrt{10}+\sqrt{15}+\sqrt{6}}\)
1) Rút gọn
a)A=\(\sqrt{13+30\sqrt{2+\sqrt{9+4\sqrt{2}}}}\)
b)B=\(\sqrt{8+2\sqrt{10+2\sqrt{5}}}+\sqrt{8-2\sqrt{10+2\sqrt{5}}}\)
c)P=\(\frac{1}{\sqrt{8}+\sqrt{7}}+\sqrt{175}-2\sqrt{2}\)
2) Rút gọn
\(\sqrt{0,25\sqrt{961}+2\sqrt{10}+\sqrt{15}+\sqrt{6}}\)
3) So sánh
a)\(\sqrt{4+\sqrt{7}}-\sqrt{4-\sqrt{7}}-\sqrt{2}\) và 0
b)\(\sqrt{2002}+\sqrt{2004}\) và \(2\sqrt{2003}\)
\(\sqrt{\frac{\sqrt{961}}{4}+2\sqrt{10}+\sqrt{15}+\sqrt{6}}\)
rút gọn
\(\frac{2\sqrt{15}-2\sqrt{10}+\sqrt{6}-3}{2\sqrt{5}-2\sqrt{10}-\sqrt{3}+\sqrt{6}}\)
Rút gọn căn thức :
A = \(\frac{\sqrt{10}+2\sqrt{6}+\sqrt{10}.\sqrt{4+\sqrt{15}}}{\sqrt{2}+\sqrt{3}+\sqrt{5}}\)\(\frac{\sqrt{10}+2\sqrt{6}+\sqrt{10}.\sqrt{4+\sqrt{15}}}{\sqrt{2}+\sqrt{3}+\sqrt{5}}\)
Rút gọn \(A=\left(\sqrt{6+\sqrt{20}}-2\sqrt{3-\sqrt{5}}+\sqrt{15-10\sqrt{2}}\right):\left(2+\sqrt{8}\right)\)
\(A=\dfrac{\sqrt{\left(\sqrt{5}+1\right)^2}-\sqrt{2}.\sqrt{6-2\sqrt{5}}+\sqrt{\left(\sqrt{10}-\sqrt{5}\right)^2}}{2\left(\sqrt{2}+1\right)}\)
\(=\dfrac{\sqrt{5}+1-\sqrt{2}\left(\sqrt{5}-1\right)+\sqrt{10}-\sqrt{5}}{2\left(\sqrt{2}+1\right)}\)
\(=\dfrac{\sqrt{5}+1-\sqrt{10}+\sqrt{2}+\sqrt{10}-\sqrt{5}}{2\left(\sqrt{2}+1\right)}\)
\(=\dfrac{\sqrt{2}+1}{2\left(\sqrt{2}+1\right)}=\dfrac{1}{2}\)
Rút gọn :
A= \(\frac{\sqrt{10}+2\sqrt{6}+\sqrt{10}.\sqrt{4+\sqrt{15}}}{\sqrt{2}+\sqrt{3}+\sqrt{5}}\)
\(A=\frac{\sqrt{10}+2\sqrt{6}+\sqrt{10}.\sqrt{4+\sqrt{15}}}{\sqrt{2}+\sqrt{3}+\sqrt{5}}\)
\(A=\frac{\sqrt{10}+2\sqrt{6}+\sqrt{40+10\sqrt{15}}}{\sqrt{2}+\sqrt{3}+\sqrt{5}}\)
\(A=\frac{\sqrt{10}+2\sqrt{6}+\sqrt{\left(5+\sqrt{15}\right)^2}}{\sqrt{2}+\sqrt{3}+\sqrt{5}}\)
\(A=\frac{\sqrt{4}+\sqrt{6}+\sqrt{10}+\sqrt{6}+\sqrt{9}+\sqrt{15}}{\sqrt{2}+\sqrt{3}+\sqrt{5}}\)
\(A=\frac{\sqrt{2}\left(\sqrt{2}+\sqrt{3}+\sqrt{5}\right)+\sqrt{3}\left(\sqrt{2}+\sqrt{3}+\sqrt{5}\right)}{\sqrt{2}+\sqrt{3}+\sqrt{5}}\)
\(A=\frac{\left(\sqrt{2}+\sqrt{3}\right)\left(\sqrt{2}+\sqrt{3}+\sqrt{5}\right)}{\sqrt{2}+\sqrt{3}+\sqrt{5}}\)
\(A=\sqrt{2}+\sqrt{3}\)
A = \(\frac{\sqrt{10}+2\sqrt{6}+5+\sqrt{15}}{\sqrt{2}+\sqrt{3}+\sqrt{5}}\)
A= \(\frac{\left(\sqrt{2}^2+2\sqrt{2}\sqrt{3}+\sqrt{3}^2\right)+\sqrt{10}+\sqrt{15}}{MC}\)
A= \(\frac{\left(\sqrt{2}+\sqrt{3}\right)^2+\sqrt{5}\left(\sqrt{2}+\sqrt{3}\right)}{\sqrt{2}+\sqrt{3}+\sqrt{5}}\)
A= \(\frac{\left(\sqrt{2}+\sqrt{3}\right)\left(\sqrt{2}+\sqrt{3}+\sqrt{5}\right)}{\left(\sqrt{2}+\sqrt{3}+\sqrt{5}\right)}\)
A= \(\sqrt{2}+\sqrt{3}\)
cách nào ngắn bạn làm nhé:)) ( cười khinh thk ah t )
câu trả lời của t đâu mất rồi.