Chứng minh rằng: Nếu tổng của 3 số tự nhiên liên tiếp là số lẻ thì tích của chubgs chia hết cho 24
chứng minh rằng nếu tổng 3 số tự nhiên liên tiếp có tổng là một số lẻ thì tích của 3 số đó chia hết cho 24
Gọi tổng 3 số tự nhiên liên tếp là : x+(x+1)+(x+2)=3x+3
Mà 3x+3 là số lẻ\(\Leftrightarrow\)x là số chẵn hay x chia hết cho 2 (1)
Tương tự, ta có tích của chúng là: x.(x+1).(x+2)=x3.3 chia hết cho 3
Từ (1)\(\Rightarrow\)x3 chia hết cho 23 (chia hết cho 8)
Vậy với x+(x+1)+(x+2) là số lẻ thì x.(x+1).(x+2) chia hết cho 24
* Mình giải theo dấu hiệu chia hết cho 24 đó bạn. Số nào vùa chia hết cho 3 vừa chia hết cho 8 thì chia hết cho 24
1. Chứng minh rằng nếu tổng của 3 số tự nhiên liên tiếp là số lẻ thì tích của chúng chia hết cho 24
gọi số ở giữa là n thì ta có (n-1)+n+(n+1)=3n là số lẻ do đó n cũng là một số lẻ vậy:
(n-1) và (n+1) là 2 số chẵn liên tiếp(đã chia hết cho 2) thì trong chúng có 1 chữ số chia hết cho 4;
:
trong ba chữ số tự nhiên liên tiếp ta lai luôn có 1 chữ số chia hết cho 3
vậy tích của ba sooschia hết cho 2x4x3=24 cm xong
Chứng tỏ rằnga) Tổng của 2 số lẻ liên tiếp thì chia hết cho 4.b) Tích của 2 số tự nhiên liên tiếp thì chia hết cho 2.c) Tích của 3 số tự nhiên liên tiếp thì chia hết cho 6.d) Tích của 4 số tự nhiên liên tiếp thì chia hết cho 24.e) Tích của 5 số tự nhiên liên tiếp thì chia hết cho 120.
ousbdl
jvdajnvjl
nsdg
ouhqer
kgkrebvjdsjb
vq
wjkgb
Fbovafbeuonasf
1. Chứng minh rằng nếu tổng của 3 số tự nhiên liên tiếp là số lẻ thì tích của chúng chia hết cho 24
2. Tìm số tự nhiên nhỏ nhất . Biết rằng khi chia số này cho 29 ta có số dư là 5 khi chia cho 31 ta có số dư là 28
Chứng minh rằng: tích của 3 số tự nhiên liên tiếp trong đó có 1 số lẻ thì chia hết cho 24
24=4x6
Gọi 3 số đó lần lượt là (a-1);a;(a+1) (a là số lẻ)
Vì a là số lẻ nên a có dạng 2k+1
(2k+1-1)(2k+1)(2k+1+1)=2k(2k+1)(2k+2)=(4k2+2k)(2k+2)=8k3+8k2+4k2+4k=8k3+12k2+4k chia hết cho 4 (1)
2k(2k+1)(2k+2) là tích của 3 số tự nhiên liên tiếp nên chia hết cho 2 và 3
Suy ra 2k(2k+1)(2k+2) chia hết cho 2x3=6 (2)
Từ (1) và (2) => 2k(2k+1)(2k+2) chia hết cho 4x6=24
Hay (a-1)a(a+1) chia hết cho 24 (đpcm)
CMR: Nếu tổng của 3 số tự nhiên liên tiếp là một số lẻ thì tích của chúng chia hết cho 24.
Câu hỏi của Roronoa Zoro - Toán lớp 6 - Học toán với OnlineMath
CMR : nếu tổng của 3 số tự nhiên liên tiếp là 1 số lẻ thì tích 3 số đó chia hết cho 24.
Gọi tổng 3 số tự nhiên liên tiếp là : x + ( x + 1 ) + ( x + 2 ) = 3x + 3
Mà 3x + 3 là số lẻ < = > x là số chẵn hay x chia hết cho 2 ( 1 )
Tương tự , ta có tích của chúng là : x. ( x + 1 ) x ( x + 2 ) = x3 x 3 chia hết cho 3
Từ ( 1 ) <=> x3 chia hết cho 23 ( chia hêt cho 8 )
Vậy với x + ( x + 1 ) (x + 2 ) là số lẻ thì x . ( x + 1 ) x ( x + 2 ) chia hết cho 24
Gọi tổng 3 số tự nhiên liên tiếp là : x + ( x + 1 ) + ( x + 2 ) = 3x + 3
Mà 3x + 3 là số lẻ < = > x là số chẵn hay x chia hết cho 2 ( 1 )
Tương tự , ta có tích của chúng là : x. ( x + 1 ) x ( x + 2 ) = x3 x 3 chia hết cho 3
Từ ( 1 ) <=> x3 chia hết cho 23 ( chia hêt cho 8 )
Vậy với x + ( x + 1 ) (x + 2 ) là số lẻ thì x . ( x + 1 ) x ( x + 2 ) chia hết cho 24
chứng minh rằng :
a) tổng của 2 số tự nhiên lẻ liên tiếp thì chia hết cho 4
b) tổng của 3 số tự nhiên chẵn liên tiếp thì chia hết cho 6
2 số lẻ liên tiếp là
2k+1;2k+3(k thuoc N)
tổng là:
2k+1+2k+3
=4k+4
=4(k+4)
chia het cho 4
chắc vậy .
a) Gọi 2 số tự nhiên lẻ liên tiếp là 2k + 1 ; 2k + 3
=> 2k + 1 + 2k + 3 = ( 2k + 2k ) + ( 1 + 3 ) = 4k + 4 \(⋮\)4 ( Vì 4k và 4 đều \(⋮\)4 )
b) Gọi 3 số tự nhiên chẵn liên tiếp là 2k ; 2k + 2 ; 2k + 4
=> 2k + 2k + 2 + 2k + 4 = ( 2k + 2k + 2k ) + ( 2 + 4 ) = 6k + 6 \(⋮\)6 ( Vì 6k và 6 đều \(⋮\)6 )
a ) 2 số tự nhiên liên tiếp là :
2k + 1 ; 2k + 3 (k thuộc N)
Tổng là :
2k + 1 + 2k + 3
= 4k + 4
= 4 (k + 1)
Vậy tổng của 2 số tự nhiên lẻ liên tiếp chia hết cho 4.
b ) 3 số tự nhiên chẵn liên tiếp là :
2k ; 2k + 2 ; 2k + 4
Tổng là :
2k + 2k + 2 + 2k + 4
= 6k + 6
= 6 (k + 1)
Vậy tổng của 3 số tự nhiên chẵn liên tiếp chia hết cho 6
1) Chứng minh rằng tổng n số tự nhiên liên tiếp chia hết cho n nếu n là số lẻ ?
2) Chứng minh tổng n số tự nhiên liên tiếp không chia hết cho n nếu n là số chẵn ?
Bài 1 :
Nếu n lẻ thì n + 1 chẵn do đó tổng n số tự nhiên liên tiếp là \(\frac{n.\left(n+1\right)}{2}\) là số chẵn nên không chia hết cho n vì n là số lẻ
Bài 2 :
Nếu n chẵn thì n + 1 lẻ do đó tổng n số tự nhiên liên tiếp là \(\frac{n.\left(n+1\right)}{2}\) là số chẵn nên chia hết cho n vì n là số chẵn