Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Thảo Linh
Xem chi tiết
Trần Ngọc An Như
Xem chi tiết
Phương An
14 tháng 10 2016 lúc 16:32

\(\frac{2a+9}{a+3}-\frac{5a+17}{a+3}-\frac{3a}{a+3}=\frac{2a+9-5a-17-3a}{a+3}=\frac{-6a-8}{a+3}=\frac{-6a-18+10}{a+3}=\frac{-6\left(a+3\right)+10}{a+3}\)

\(\frac{2a+9}{a+3}-\frac{5a+17}{a+3}-\frac{3a}{a+3}\) là số nguyên

<=> a + 3 thuộc Ư(10) = {-10 ; -5 ; -2 ; -1 ; 1 ; 2 ; 5 ; 10}

<=> a thuộc {-13 ; -8 ; -5 ; -4 ; -2 ; -1 ; 2 ; 7}

 

Nguyen Ngoc Van
Xem chi tiết
Yến Nhi Libra Virgo HotG...
Xem chi tiết
Đỗ Việt Dũng
Xem chi tiết
Lê Nhật Khôi
26 tháng 1 2018 lúc 20:31

câu a)

\(\frac{2a+8}{5}-\frac{a}{5}=\frac{2a+8-a}{5}=\frac{a+8}{5}\)

Để \(\frac{a+8}{5}\in Z\)thì \(a+8\)phải là bội của 5

Suy ra \(a+8\in\left\{\pm1;\pm5\right\}\)

Suy ra \(a\in\left\{-7;-9;-3;-13\right\}\)

Hết 

Câu 2 tương tự nha

Đỗ Việt Dũng
26 tháng 1 2018 lúc 20:43

bạn làm hộ mink câu b được không đúng mình k cho

Lê Nhật Khôi
26 tháng 1 2018 lúc 21:01

Đây câu b)

Ta có: 

\(\frac{2a+9}{a+3}-\frac{5a+17}{a+3}-\frac{3a}{a+3}\)

=\(\frac{2a+9-5a-17-3a}{a+3}=\frac{-6a+\left(-8\right)}{a+3}\)

\(\frac{-6\left(a+3\right)+10}{a+3}\)(1)

Để (1) thuộc Z thì 10 là bội của a+3

Tức a+3 là ước của 10

Khúc sau dễ rồi đấy bn.

Với lại cái khúc tìm x bạn phải kẻ bảng . Hồi nãy mik làm tắt

nguyen yen nhi
Xem chi tiết
Edogawa Conan
17 tháng 9 2019 lúc 13:32

Ta có:

B = \(\frac{2a+9}{a+3}-\frac{5a+17}{a+3}-\frac{3a}{a+3}\)

B = \(\frac{\left(2a+9\right)-\left(5a+17\right)-3a}{a+3}\)

B = \(\frac{2a+9-5a-17-3a}{a+3}\)

B = \(\frac{-6a-8}{a+3}=\frac{-6\left(a+3\right)+10}{a+3}=-6+\frac{10}{a+3}\)

Để B \(\in\)Z <=> 10 \(⋮\)a + 3  <=> a + 3 \(\in\)Ư(10) = {1; -1; 2; -2; 5; -5; 10; -10}

Lập bảng : 

a + 3 1 -1 2 -2 5 -5 10 -10
  a -2 -4 -1 -5 2 -8 7 -13

Vậy ...

Nguyễn Phương Uyên
17 tháng 9 2019 lúc 13:31

\(B=\frac{2a+9}{a+3}-\frac{5a+17}{a+3}-\frac{3a}{a+3}\)

\(B=\frac{2a+9-5a-17-3a}{a+3}\)

\(B=\frac{-6a-8}{a+3}\inℤ\)

\(\Leftrightarrow-6a-8⋮a+3\)

\(\Rightarrow-6a-18+10⋮a+3\)

\(\Rightarrow-6\left(a+3\right)+10⋮a+3\)

\(\Rightarrow10⋮a+3\)

\(\Rightarrow a+3\in\left\{-1;1;-2;2;-5;5;-10;10\right\}\)

\(\Rightarrow a\in\left\{-4;-2;-5;-1;-8;2;-13;7\right\}\)

Vũ Đức Đại
Xem chi tiết
shitbo
16 tháng 1 2020 lúc 22:52

Đặt \(D=\frac{2a+9}{a+3}+\frac{5a+17}{a+3}-\frac{3a}{a+3}\)

\(=\frac{2a+9+5a+17-3a}{a+3}\)

\(=\frac{4a+26}{a+3}=\frac{4\left(a+3\right)+14}{a+3}=4+\frac{14}{a+3}\)

\(\Rightarrow14⋮a+3\)

\(\Rightarrow a+3\inƯ\left(14\right)\)

Đến đây làm nốt

Khách vãng lai đã xóa
Chu Công Đức
17 tháng 1 2020 lúc 18:37

Đặt \(A=\frac{2a+9}{a+3}+\frac{5a+17}{a+3}-\frac{3a}{a+3}\)

\(\Rightarrow A=\frac{\left(2a+9\right)+\left(5a+17\right)-3a}{a+3}=\frac{4a+26}{a+3}=\frac{4a+12+14}{a+3}\)

\(=\frac{4\left(a+3\right)+14}{a+3}=4+\frac{14}{a+3}\)

Vì \(4\inℤ\)\(\Rightarrow\)Để A nguyên thì \(14⋮\left(a+3\right)\)\(\Rightarrow a+3\inƯ\left(14\right)=\left\{\pm1;\pm2;\pm7;\pm14\right\}\)

\(\Rightarrow a\in\left\{-17;-10;-5;-4;-2;-1;4;11\right\}\)

Vậy \(a\in\left\{-17;-10;-5;-4;-2;-1;4;11\right\}\)

Khách vãng lai đã xóa
Bui Cam Lan Bui
Xem chi tiết
Hồ Thu Giang
5 tháng 10 2015 lúc 21:32

\(\frac{2a+9}{a+3}+\frac{5a+17}{a+3}-\frac{3a}{a+3}=\frac{4a+26}{a+3}\)

Để Phân số trên nguyên

=> 4a + 26 chia hết cho a + 3

=> 4a + 12 + 14 chia hết cho a + 3

Vì 4a + 12 chia hết cho a + 3

=> 14 chia hết cho a + 3

=> a + 3 thuộc Ư(14)

=> a + 3 thuộc {1; -1; 2; -2; 7; -7; 14; -14}

=> a thuộc {-2; -4; -1; -5; 4; -11; 11; -17}

Bui Cam Lan Bui
Xem chi tiết
✓ ℍɠŞ_ŦƦùM $₦G ✓
3 tháng 10 2015 lúc 21:21

\(\frac{2a+9}{a+3}+\frac{5a+17}{a+3}-\frac{3a}{a+3}=\frac{2a+9+5a+17-3a}{a+3}=\frac{4a+26}{a+3}=\frac{4a+12+14}{a+3}\)

\(=\frac{4a+12}{a+3}+\frac{14}{a+3}=\frac{4\left(a+3\right)}{a+3}+\frac{14}{a+3}=4+\frac{14}{a+3}\in Z\)

\(\Rightarrow\frac{14}{a+3}\in Z\Rightarrow\)14 chia hết cho a+3

=>a+3=-14;-7;-2;-1;1;2;7;14

=>a=-17;-10;-5;-4;-2;-1;4;11

Trịnh Tiến Đức
3 tháng 10 2015 lúc 21:22

\(\frac{2a+9}{a+3}+\frac{5a+17}{a+3}-\frac{3a}{a+3}=\frac{2a+9+5a+17-3a}{a+3}=\frac{4a+26}{a+3}\)

=> 4a+26 chia het cho a+3

=> 4a+12+14 chia het cho a+3

=> 4(a+3) +14 chia het cho a+3

=> 14 chia het cho a+3

=> a+3= -1;1;-2;2;-7;7;-14;14

=> a= -4;-2;-5;-1;-10;4;-17;11

Đỗ Lê Tú Linh
3 tháng 10 2015 lúc 21:24

Ta có: \(\frac{2a+9}{a+3}+\frac{5a+17}{a+3}-\frac{3a}{a+3}=\frac{2a+9+5a+17-3a}{a+3}=\frac{\left(2a+5a-3a\right)+\left(9+17\right)}{a+3}=\frac{4a-26}{a+3}\)

Để \(\frac{2a+9}{a+3}+\frac{5a+17}{a+3}-\frac{3a}{a+3}\) là số nguyên thì (4a-26) chia hết cho a+3

nên 4a+12-40 chia hết cho a+3

hay 4(a+3)-40 chia hết cho a+3

Vì a+3 chia hết cho a+3 nên 4(a+3) chia hết cho a+3 mà 4(a+3)-40 chia hết cho a+3

nên 40 chia hết cho a+3 hay a+3 E Ư(40)={1;2;4;5;8;10;20;40}

nên aE{-2;-1;1;2;5;7;17;37}

Vậy để \(\frac{2a+9}{a+3}+\frac{5a+17}{a+3}-\frac{3a}{a+3}\) là số nguyên thì aE{-2;-1;1;2;5;7;17;37}