CMR : nếu tổng của 3 số tự nhiên liên tiếp là 1 số lẻ thì tích 3 số đó chia hết cho 24.
CMR: Nếu tổng của 3 số tự nhiên liên tiếp là một số lẻ thì tích của chúng chia hết cho 24.
Câu hỏi của Roronoa Zoro - Toán lớp 6 - Học toán với OnlineMath
chứng minh rằng nếu tổng 3 số tự nhiên liên tiếp có tổng là một số lẻ thì tích của 3 số đó chia hết cho 24
Gọi tổng 3 số tự nhiên liên tếp là : x+(x+1)+(x+2)=3x+3
Mà 3x+3 là số lẻ\(\Leftrightarrow\)x là số chẵn hay x chia hết cho 2 (1)
Tương tự, ta có tích của chúng là: x.(x+1).(x+2)=x3.3 chia hết cho 3
Từ (1)\(\Rightarrow\)x3 chia hết cho 23 (chia hết cho 8)
Vậy với x+(x+1)+(x+2) là số lẻ thì x.(x+1).(x+2) chia hết cho 24
* Mình giải theo dấu hiệu chia hết cho 24 đó bạn. Số nào vùa chia hết cho 3 vừa chia hết cho 8 thì chia hết cho 24
1, CMR: tổng của 3 số tự nhiên liên tiếp chia hết cho 3, tổng của 5 số tự nhiên liên tiếp thì chia hết cho 5
2,CMR:
+ tổng của 3 số chẵn liên tiếp thì chia hết cho 6
+ tổng của 3 số lẻ liên tiếp thì không chia hết cho 6
+ tổng của 5 số chẵn liên tiếp thì chia hết cho 10 còn tổng của 5 số lẻ liên tiếp thì chia 10 dư 5
1.Gọi 3 số tự nhiên liên tiếp là a, a+1, a+2
Có: a+(a+1)+(a+2)=a+a+a+1+2=3a+3=3(a+1)\(⋮\) 3
Vậy ...
Gọi 5 số tự nhiên liên tiếp là a, a+1, a+2,a+3,a+4
Có : a+(a+1)+(a+2)+(a+3)+(a+4)= a+a+a+a+a+1+2+3+4=5a+10=5(a+2)\(⋮\) 5
Vậy ...
2.
+)Gọi 3 số chẵn liên tiếp là a, a+2,a+4
Có : a+(a+2)+(a+4)=a+a+a+2+4=3a+6
mà a là số chẵn nên 3a \(⋮\) 6
\(\Rightarrow\) 3a+6\(⋮\) 6
Vậy ....
+) ngược lại ý đầu
+)Gọi 5 số chẵn liên tiếp là a, a+2,a+4 , a-2,a-4
Có : a+(a+2)+(a+4)+(a-2)+(a-4)=a+a+a+a+a+2+4-2-4=5a
mà a là số chẵn nên 5a \(⋮\) 10
\(\Rightarrow\) 5a\(⋮\) 10
Vậy ....
+) ngược lại ý 3
1. Chứng minh rằng nếu tổng của 3 số tự nhiên liên tiếp là số lẻ thì tích của chúng chia hết cho 24
gọi số ở giữa là n thì ta có (n-1)+n+(n+1)=3n là số lẻ do đó n cũng là một số lẻ vậy:
(n-1) và (n+1) là 2 số chẵn liên tiếp(đã chia hết cho 2) thì trong chúng có 1 chữ số chia hết cho 4;
:
trong ba chữ số tự nhiên liên tiếp ta lai luôn có 1 chữ số chia hết cho 3
vậy tích của ba sooschia hết cho 2x4x3=24 cm xong
Chứng minh rằng: Nếu tổng của 3 số tự nhiên liên tiếp là số lẻ thì tích của chubgs chia hết cho 24
Vì tổng 3 số tự nhiên liên tiếp là 1 số lẻ => trong 3 số đó có 2 số chẵn và 1 số lẻ
Gọi 3 số đó là 2k+2; 2k+3; 2k+4 (k thuộc N)
Tích 3 số trên là: (2k+2).(2k+3).(2k+4)
Vì (2k+2).(2k+3).(2k+4) là tích 3 số tự nhiên liên tiếp nên (2k+2).(2k+3).(2k+4) chia hết cho 3 (1)
Do (2k+2).(2k+4) là tích 2 số chẵn liên tiếp nên (2k+2).(2k+4) chia hết cho 8 (2)
Từ (1) và (2), do (3,8)=1 => (2k+2).(2k+3).(2k+4) chia hết cho 24
=> đpcm
Chứng tỏ rằnga) Tổng của 2 số lẻ liên tiếp thì chia hết cho 4.b) Tích của 2 số tự nhiên liên tiếp thì chia hết cho 2.c) Tích của 3 số tự nhiên liên tiếp thì chia hết cho 6.d) Tích của 4 số tự nhiên liên tiếp thì chia hết cho 24.e) Tích của 5 số tự nhiên liên tiếp thì chia hết cho 120.
ousbdl
jvdajnvjl
nsdg
ouhqer
kgkrebvjdsjb
vq
wjkgb
Fbovafbeuonasf
Chứng minh rằng: tích của 3 số tự nhiên liên tiếp trong đó có 1 số lẻ thì chia hết cho 24
24=4x6
Gọi 3 số đó lần lượt là (a-1);a;(a+1) (a là số lẻ)
Vì a là số lẻ nên a có dạng 2k+1
(2k+1-1)(2k+1)(2k+1+1)=2k(2k+1)(2k+2)=(4k2+2k)(2k+2)=8k3+8k2+4k2+4k=8k3+12k2+4k chia hết cho 4 (1)
2k(2k+1)(2k+2) là tích của 3 số tự nhiên liên tiếp nên chia hết cho 2 và 3
Suy ra 2k(2k+1)(2k+2) chia hết cho 2x3=6 (2)
Từ (1) và (2) => 2k(2k+1)(2k+2) chia hết cho 4x6=24
Hay (a-1)a(a+1) chia hết cho 24 (đpcm)
1. Chứng minh rằng nếu tổng của 3 số tự nhiên liên tiếp là số lẻ thì tích của chúng chia hết cho 24
2. Tìm số tự nhiên nhỏ nhất . Biết rằng khi chia số này cho 29 ta có số dư là 5 khi chia cho 31 ta có số dư là 28
a) CMR tích của 4 số tự nhiên liên tiếp thì chia hết cho 12
b) CMR tích của 5 số tự nhiên liên tiếp thì chia hết cho 60
c) CMR tích của 4 số tự nhiên liên tiếp thì chia hết cho 24