1 . chung minh n^2+n+1589 la so chinh phuong
chung minh A = n*(n+1)*(n+2)*(n+3)khong la so chinh phuong voi moi n la so tu nhien
Ta có :
\(n\left(n+1\right)\left(n+2\right)\left(n+3\right)=\left[n\left(n+3\right)\right].\left[\left(n+1\right)\left(n+2\right)\right]=\left(n^2+3n\right)\left(n^2+3n+2\right)\)
ko là số cp
1. Chung minh tich cua 2 n so tu nhien x la so chinh phuong
ta co h cua 2n so tu nhien x thi bang x2n
ta co x2n=(xn)2 la binh phuong cua 1 so tu nhien
Suy ra x2n la so chinh phuong
Hay h cua 2n so tu nhien x la 1 so chinh phuong
Chung minh rang neu n la mot stn lon hon 1 thi so 2^n-1 khong the la so chinh phuong
Chung minh: 1+[2.6.10......(4n-2)]/[(n+5)(n+6)......2n] .
la so chinh phuong
M=1111......1 - 222...2
(2n chu so 1) ( n chu so 2)
chung minh M la so chinh phuong
Chung minh: 1+5^k+8^n khong la so chinh phuong voi moi k, n thuoc N
chung minh rang: N=444...44 888...8 9(nchu so 4)( n-1 chu so 8) la so chinh phuong
a) cho A = 1+3+5+7+...+(2n+1) Voi n thuoc N
chung to rang A la so chinh phuong
b)B=2+4+6+8+...+2n voi n thuocN
so B co phai la so chinh phuong ko
\(A=1+3+....+\left(2n+1\right)=\frac{\left(2n+2\right)\left(n+1\right)}{2}=\left(n+1\right)^2\)
A = 1 + 3 + 5 + 7 + ... + 2n + 1
= \(\left[\left(2n+1-1\right):2+1\right].\left(\frac{2n+1+1}{2}\right)\)
= \(\left(n+1\right).\left(n+1\right)\)
= \(\left(n+1\right)^2\)
=> A là số chính phương (đpcm)
b) \(2+4+6+...+2n\)
= \(\left[\left(2n-2\right):2+1\right].\frac{2n+2}{2}\)
= \(n.\left(n+1\right)\)
= \(n^2+n\)
\(\Rightarrow\)B không là số chính phương
a) A có số số hạng là: (2n+1-1) :2 +1 = n+1 (số)
=> \(A=\frac{\left(2n+1+1\right).\left(n+1\right)}{2}\)
\(=\frac{2\left(n+1\right)\left(n+1\right)}{2}\)
\(A=\left(n+1\right)^2\)
\(\Rightarrow A\)là số chính phương
chung minh: 3n+63 (n thuoc N ; n khac 0,4) khong la so chinh phuong