tmr : 98 + 97 + 96 chia hết cho 91
bài này quá dễ
chứng minh rằng
a, 942^60-351^37 chia hết cho 5
b, 99^5-98^4+97^3-96^2 chia hết cho 2 và 5
các bạn giúp mình làm bài này với mình đang cần gấp
CMR:99^5-98^4+97^3-96^2 chia hết cho 2 và 5
a) 942^60 - 351^37 chia hết cho 5
2^1 có c/số tận củng là 2
2^2 có c/số tận củng là 4
2^3 có c/số tận củng là 8
2^4 có c/số tận củng là 6
2^5 có c/số tận củng là 2
................................
=>Các số có c/số tận cung là 2 có lũy thừa được kết quả có c/số tân cung lặp lại theo quy luật 1 nhóm 4 c/số sau (2;4;8;6)
ta có 60: 4=15(nhóm) => 942^60 có c/số tận cùng là c/số tận cùng của nhóm thứ 15 và là c/số 6
mặt khác 351^37 có kết quả có c/số tận cùng là 1 (vì 351 có c/số tận cung =1)
=>kết quả phép trừ 942^60 - 351^37 có c/số tận cùng là: 6-1=5
=>942^60 - 351^37 chia hết cho 5
Cho B = 1+5+5^2+5^3+...+5^96+5^97+5^98 .CMR B chia hết cho 31
Ta có \(B=\left(1+5+5^2\right)+\left(5^3+5^4+5^5\right)+...+\left(5^{96}+5^{97}+5^{98}\right)\)
\(B=\left(1+5+5^2\right)+5^3.\left(1+5+5^2\right)+...+5^{96}.\left(1+5+5^2\right)\)
\(B=31+5^3.31+...+5^{96}.31\)
\(B=31.\left(1+5^3+5^6+...+5^{96}\right)\) chia hết cho 31.
CMR: a, 942^60 chia hết cho 5
b, 99^5 - 98^4+ 97^3- 96^2 chia hết cho 2 cho 5
Chứng minh rằng 99^5 - 98^4 + 97^3 - 96^2 chia hết cho 2 và 5
Tìm số đuôi của tất các số trên nhân thử vào:
9 x 9 x 9 x 9 x 9 = đuôi 9
4 x 4 x 4 x 4 = đuôi 6
.......
9 - 6 + 3 - 6 = 0
Suy ra chia hết cho cả 2 và 5 thôi
Ta có: 995=992.2+1=(992)2.99=(...1)2.99=(....1)2.99=(.....9)
Ta có: 984=(...6)
Ta có: 973=972+1=972.97=(...9).97=(.....3)
Ta có: 962=(....6)
Do đó: 995-984+973-962=(....9)-(....6)+(....3)-(....6)=(......0) chia hết cho 2 và 5 (đpcm)
Chứng minh M=396+397+398 chia hết cho 13.
Chứng minh rằng:
a, 942^60 - 351^37 chia hết cho 5
b, 99^5 - 98^4 + 97^3 - 96^2 chia hết cho 2 và 5
Chứng minh rằng:
Câu a: 942^60-351^37 chia hết cho 5
Câu b: 99^5 - 98^4 + 97^3 - 96^2 chia hết cho 2 và 5
mọi người ơi giúp mình với :
99^5 - 98^4 + 97^3 + 96^2 chia hết cho 2 và 5