Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
vietnam
Xem chi tiết
ice ❅❅❅❅❅❅ dark
19 tháng 4 2019 lúc 16:02

A = 1+ 2 + 3 + 4 + 5 + ... + 99

Số các số hạng của A là : ( 99 -1 ) : 1 + 1 = 99 ( số hạng )

A = ( 1+ 99 ) . 99 : 2 = 4950 

Vậy A = 4950

B = \(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+...+\frac{1}{99}\)

B = \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+...+\frac{1}{9.11}\)

????????????????????????????????? Mình nghĩ đầu bài phải là : \(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{90}\)

KAl(SO4)2·12H2O
19 tháng 4 2019 lúc 16:02

A = 1 + 2 + 3 + 4 + 5 + ... + 99

Số số hạng của A là:

     (99 - 1) : 1 + 1 = 99 (số hạng) 

Tổng dãy số trên là: 

     (99 + 1) x 100 : 2 = 5000 (số hạng)

phần B có vấn đề nha :)

KAl(SO4)2·12H2O
19 tháng 4 2019 lúc 16:03

Sửa lại hộ tớ: 

Tổng dãy số trên là:

         (99 + 1) x 99 : 2 = 4950

Trần Thị Đảm
Xem chi tiết
Trần Linh Chi
Xem chi tiết

       A =          1 +   \(\dfrac{1}{3^2}\) + \(\dfrac{1}{3^3}\) +.......+\(\dfrac{1}{3^{n-1}}\) + \(\dfrac{1}{3^n}\)  

3\(\times\) A  =  3  +  \(\dfrac{1}{3}\) +  \(\dfrac{1}{3^2}\) + \(\dfrac{1}{3^3}\)+........+ \(\dfrac{1}{3^{n-1}}\)

3A - A =  3 + \(\dfrac{1}{3}\) - 1 - \(\dfrac{1}{3^n}\) 

    2A  = \(\dfrac{7}{3}\) - \(\dfrac{1}{3^n}\)

      A  = ( \(\dfrac{7}{3}\) - \(\dfrac{1}{3^n}\)): 2

     A =   \(\dfrac{7.3^{n-1}-1}{3^n}\) : 2

     A = \(\dfrac{7.3^{n-1}-1}{2.3^n}\)

 

 

   B   =      \(\dfrac{1}{2}\) - \(\dfrac{1}{2^2}\) + \(\dfrac{1}{2^3}\) - \(\dfrac{1}{2^4}\)+......+\(\dfrac{1}{2^{99}}\) - \(\dfrac{1}{2^{100}}\)

2B    =  2 - \(\dfrac{1}{2}\) + \(\dfrac{1}{2^2}\) -  \(\dfrac{1}{2^3}\)\(\dfrac{1}{2^4}\)-.......-\(\dfrac{1}{2^{99}}\)

2B + B = 2 - \(\dfrac{1}{2^{100}}\)

  3B     =  2 - \(\dfrac{1}{2^{100}}\)

    B     =   ( 2 - \(\dfrac{1}{2^{100}}\)): 3

    B     =     \(\dfrac{2.2^{100}-1}{2^{100}}\) : 3

    B     = \(\dfrac{2^{101}-1}{3.2^{100}}\)

sakurakinomoto
Xem chi tiết
sakurakinomoto
29 tháng 3 2019 lúc 20:45

Ai trả lời nhanh mình tích cho nhé!

Vương Hải Nam
29 tháng 3 2019 lúc 20:53

\(A=\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{98.99.100}\)

\(A=\frac{1}{2}.\left(\frac{2}{1.2.3}+\frac{2}{2.3.4}+...+\frac{2}{98.99.100}\right)\)

\(A=\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{98.99}-\frac{1}{99.100}\right)\)

\(A=\frac{1}{2}.\left(\frac{1}{2}-\frac{1}{9900}\right)\)

\(A=\frac{1}{2}.\frac{4949}{9900}\)

\(A=\frac{4949}{19800}\)

kudo shinichi
Xem chi tiết
Trần Thị Kim Ngân
7 tháng 6 2016 lúc 19:09

Giải 

\(A=1+2+3+4+5+...+99+100\)

Số số hạng của A là: \(\left(100-1\right)\div1+1=100\)(số hạng)

Tổng A là: \(\frac{\left(100+1\right)\times100}{2}=5050\)

Vây A=5050

\(B=\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{9900}\)

\(B=\frac{1}{1\times2}+\frac{1}{2\times3}+\frac{1}{3\times4}+...+\frac{1}{99\times100}\)

\(B=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)

\(B=1-\frac{1}{100}=\frac{99}{100}\)

Vậy \(B=\frac{99}{100}\)

ghsjhsjsh
7 tháng 6 2016 lúc 19:12

minh cam thay de hoi sai

Trần Quỳnh Mai
7 tháng 6 2016 lúc 19:15

A = 1 + 2 + 3 + ... + 99 + 100

A = 100 + 99 + ... + 2 + 1

2A = 101 + 101 +... + 101 + 101 ( 100 số hạng )

A = 101 . 100 : 2 = 5050

Vậy A = 5050 

B = 1/2 + 1/6 + 1/12 + 1/20 + 1/30 + ... + 1/9900

B = 1/1.2 + 1/2.3 + 1/3.4 + 1/4.5 + ... + 1/99.100

B = 1/1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + ... + 1/99 - 1/100

B = 1/1 - 1/100

B = 99/100

Vậy B = 99/100

Đà Nguyễn Sông
Xem chi tiết
nguyen tien dung
9 tháng 2 2017 lúc 12:14

bạn k cho mik rồi mik mới trả lời

Câu 11:

(\(\dfrac{11}{4}\)\(\dfrac{-5}{9}\) - \(\dfrac{4}{9}\).\(\dfrac{11}{4}\)).\(\dfrac{8}{33}\)

\(\dfrac{11}{4}\).(\(\dfrac{-5}{9}\)  - \(\dfrac{4}{9}\)). \(\dfrac{8}{33}\)

\(\dfrac{11}{4}\).(-1).\(\dfrac{8}{33}\)

= - \(\dfrac{2}{3}\)

Câu 2: (\(\dfrac{17}{28}\) + \(\dfrac{18}{29}\) - \(\dfrac{19}{30}\) - \(\dfrac{20}{31}\)).(-\(\dfrac{5}{2}\) + \(\dfrac{1}{4}\) + \(\dfrac{1}{6}\))

        = (\(\dfrac{17}{28}\) + \(\dfrac{18}{29}\) - \(\dfrac{19}{30}\) - \(\dfrac{20}{31}\)).(-\(\dfrac{5}{2}\) + \(\dfrac{5}{12}\))

       = (\(\dfrac{17}{28}\) + \(\dfrac{18}{29}\) - \(\dfrac{19}{30}\) - \(\dfrac{20}{31}\)). 0

      = 0

Đoàn Hoài Thu
Xem chi tiết
Trần Tuấn Hoàng
3 tháng 2 2022 lúc 10:30

a) \(\dfrac{1}{2}+\dfrac{1}{6}+\dfrac{1}{12}+\dfrac{1}{20}+\dfrac{1}{30}\)

=\(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+\dfrac{1}{5.6}\)

=\(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}\)

=\(1-\dfrac{1}{6}\)=\(\dfrac{5}{6}\)

b) \(\dfrac{1}{15}+\dfrac{1}{35}+\dfrac{1}{63}+\dfrac{1}{99}+\dfrac{1}{143}\)

=\(\dfrac{1}{3.5}+\dfrac{1}{5.7}+\dfrac{1}{7.9}+\dfrac{1}{9.11}+\dfrac{1}{11.13}\)

=\(\dfrac{1.2}{3.5.2}+\dfrac{1.2}{5.7.2}+\dfrac{1.2}{7.9.2}+\dfrac{1.2}{9.11.2}+\dfrac{1.2}{11.13.2}\)

=\(\dfrac{1}{2}\left(\dfrac{2}{3.5}+\dfrac{2}{5.7}+\dfrac{2}{7.9}+\dfrac{2}{9.11}+\dfrac{2}{11.13}\right)\).

=\(\dfrac{1}{2}\left(\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{11}+\dfrac{1}{11}-\dfrac{1}{13}\right)\)

=\(\dfrac{1}{2}\left(\dfrac{1}{3}-\dfrac{1}{13}\right)\)=\(\dfrac{1}{2}.\dfrac{10}{39}\)=\(\dfrac{5}{39}\).

c) \(\dfrac{1}{2}+\dfrac{1}{6}+\dfrac{1}{12}+\dfrac{1}{20}+\dfrac{1}{30}+\dfrac{1}{42}+\dfrac{1}{56}\)

=\(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+\dfrac{1}{5.6}+\dfrac{1}{6.7}+\dfrac{1}{7.8}\)

=\(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{8}\)

=\(1-\dfrac{1}{8}=\dfrac{7}{8}\).

d) \(\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+\dfrac{1}{2^4}+\dfrac{1}{2^5}\)

=\(\dfrac{2^4}{2^5}+\dfrac{2^3}{2^5}+\dfrac{2^2}{2^5}+\dfrac{2}{2^5}+\dfrac{1}{2^5}\)

=\(\dfrac{2^4+2^3+2^2+2+1}{2^5}\)=\(\dfrac{2^5-1}{2^5}=\dfrac{31}{32}\).

e) \(\dfrac{1}{7}+\dfrac{1}{7^2}+\dfrac{1}{7^3}+...+\dfrac{1}{7^{100}}=\dfrac{7^{99}+7^{98}+7^{97}+...+7+1}{7^{100}}=\dfrac{\dfrac{7^{100}-1}{6}}{7^{100}}=\dfrac{7^{100}-1}{6.7^{100}}\)

 

 

nguyễn hải yến
Xem chi tiết
Lân Trần Quốc
28 tháng 7 2019 lúc 20:07

a,

\(A=\left(1-\frac{1}{4}\right)\left(1-\frac{1}{9}\right)...\left(1-\frac{1}{900}\right)\\ =\left(1-\frac{1}{2}\right)\left(1+\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\left(1+\frac{1}{3}\right)...\left(1-\frac{1}{30}\right)\left(1+\frac{1}{30}\right)\\ =\frac{1}{2}\cdot\frac{3}{2}\cdot\frac{2}{3}\cdot\frac{4}{3}\cdot...\cdot\frac{29}{30}\cdot\frac{31}{30}\\ =\frac{1}{2}\cdot\frac{2}{3}\cdot...\cdot\frac{29}{30}\cdot\frac{3}{2}\cdot\frac{4}{3}\cdot...\cdot\frac{31}{30}\\ =\frac{1\cdot2\cdot...\cdot29}{2\cdot3\cdot...\cdot30}\cdot\frac{3\cdot4\cdot...\cdot31}{2\cdot3\cdot...\cdot30}\\ =\frac{1}{30}\cdot\frac{31}{2}=\frac{31}{60}\)

b,

\(B=\frac{1}{2}\left(\frac{2}{1\cdot2\cdot3}+\frac{2}{2\cdot3\cdot4}+...+\frac{2}{98\cdot99\cdot100}\right)\\ =\frac{1}{2}\left(\frac{3-1}{1\cdot2\cdot3}+\frac{4-2}{2\cdot3\cdot4}+...+\frac{100-98}{98\cdot99\cdot100}\right)\\ =\frac{1}{2}\left(\frac{1}{1\cdot2}-\frac{1}{2\cdot3}+\frac{1}{2\cdot3}-\frac{1}{3\cdot4}+...+\frac{1}{98\cdot99}-\frac{1}{99\cdot100}\right)\\ =\frac{1}{2}\left(\frac{1}{2}-\frac{1}{9900}\right)\\ =\frac{1}{2}\cdot\frac{4450-1}{9900}=\frac{1}{2}\cdot\frac{4449}{9900}=\frac{4449}{19800}=\frac{1483}{6600}\)

c, (Chịu :V)

d,

\(D=\frac{1}{3}\left(\frac{3}{1\cdot2\cdot3\cdot4}+\frac{3}{2\cdot3\cdot4\cdot5}+...+\frac{3}{27\cdot28\cdot29\cdot30}\right)\\ =\frac{1}{3}\left(\frac{4-1}{1\cdot2\cdot3\cdot4}+\frac{5-2}{2\cdot3\cdot4\cdot5}+...+\frac{30-27}{27\cdot28\cdot29\cdot30}\right)\\ =\frac{1}{3}\left(\frac{1}{1\cdot2\cdot3}-\frac{1}{2\cdot3\cdot4}+\frac{1}{2\cdot3\cdot4}-\frac{1}{3\cdot4\cdot5}+...+\frac{1}{27\cdot28\cdot29}-\frac{1}{28\cdot29\cdot30}\right)\\ =\frac{1}{3}\left(\frac{1}{6}-\frac{1}{24630}\right)\\ =\frac{228}{4105}\)

Chúc bạn học tốt nhaok.

Em Ko Có Tên
Xem chi tiết
_Shadow_
10 tháng 4 2019 lúc 13:59

\(A=1+2+3+4+5+...+99+100\)

Dãy trên có số số hạng là:

(100 - 1) + 1 = 100 (số hạng)

Tổng \(A=\frac{\left(100+1\right)\cdot100}{2}=5050\)

\(B=\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{9900}\)

\(B=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{99.100}\)

\(B=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)

\(B=1-\frac{1}{100}\)

\(\Rightarrow B=\frac{99}{100}\)

~Học tốt~

Dương Mai Anh
Xem chi tiết