Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Trình phượng
Xem chi tiết
Mang Phạm
Xem chi tiết
Nguyễn Việt Lâm
8 tháng 12 2021 lúc 17:12

Xác suất cả 3 lần đều không xuất hiện mặt 6 chấm: \(\left(\dfrac{5}{6}\right)^3=\dfrac{125}{216}\)

Xác suất để ít nhất 1 lần xuất hiện mặt 6 chấm:

\(1-\dfrac{125}{216}=\dfrac{91}{216}\)

Ngọc Nhi
22 tháng 4 2021 lúc 18:24

B

Mèo con
Xem chi tiết
Nguyễn Việt Lâm
15 tháng 3 2022 lúc 14:01

\(\lim\limits_{x\rightarrow+\infty}\left(\sqrt{x^2+ax-2}-x\right)=\lim\limits_{x\rightarrow+\infty}\dfrac{ax-2}{\sqrt{x^2+ax-2}+x}=\lim\limits_{x\rightarrow+\infty}\dfrac{a-\dfrac{2}{x}}{\sqrt{1+\dfrac{a}{x}-\dfrac{2}{x^2}}+1}=\dfrac{a}{2}\)

\(\Rightarrow\dfrac{a}{2}=1\Rightarrow a=2\in\left(1;3\right)\)

Mèo con
Xem chi tiết
Herera Scobion
8 tháng 4 2022 lúc 19:34

22A         23A

Trình phượng
Xem chi tiết
Nguyễn Việt Lâm
14 tháng 4 2022 lúc 20:22

23.

Gọi M là trung điểm BC

Trong mp (SAM), từ A kẻ \(AH\perp SM\) (1)

Ta có: \(AM\perp BC\) (trung tuyến đồng thời là đường cao trong tam giác đều)

Lại có \(SA\perp\left(ABC\right)\Rightarrow SA\perp BC\)

\(\Rightarrow BC\perp\left(SAM\right)\Rightarrow BC\perp SH\)

(1);(2) \(\Rightarrow SH\perp\left(SBC\right)\)

\(\Rightarrow SH=d\left(A;\left(SBC\right)\right)\)

\(AM=\dfrac{a\sqrt{3}}{2}\) (trung tuyến tam giác đều)

Hệ thức lượng trong tam giác vuông SAM:

\(AH=\dfrac{AM.SA}{\sqrt{AM^2+SA^2}}=\dfrac{a\sqrt{66}}{11}\)

undefined

Nguyễn Việt Lâm
14 tháng 4 2022 lúc 20:34

24.

Gọi D, E lần lượt là trung điểm BC, AC

\(\Rightarrow\) DE là đường trung bình tam giác ABC \(\Rightarrow\left\{{}\begin{matrix}DE\perp AC\\DE=\dfrac{1}{2}AB\end{matrix}\right.\)

SBC đều \(\Rightarrow SD\perp BC\Rightarrow SD\perp\left(ABC\right)\)

\(\Rightarrow SD\perp AC\)

\(\Rightarrow AC\perp\left(SDE\right)\Rightarrow\widehat{SED}\) là góc giữa (SAC) và (ABC)

\(AB=BC.cos\widehat{ABC}=a.cos30^0=\dfrac{a\sqrt{3}}{2}\)

\(\Rightarrow DE=\dfrac{1}{2}AB=\dfrac{a\sqrt{3}}{4}\)

\(SD=\dfrac{a\sqrt{3}}{2}\) (trung tuyến tam giác đều cạnh a)

\(tan\varphi=tan\widehat{SED}=\dfrac{SD}{DE}=2\)

undefined