tính giá trị biểu thức p=2/3.5+2/5.7+2/7.9....+2/2009.2011
Tính giá trị biểu thức
\(\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+......1\frac{2}{41.43}\)
2/3.5 + 2/5.7 + 2/7.9 + ... + 2/41.43
= 1/3 - 1/5 + 1/5 - 1/7 + 1/7 - 1/9 + ... + 1/41 - 1/43
= 1/3 - 1/43
= 40/129
ỦNG HỘ NHA
2/3.5 + 2/5.7 + 2/7.9 +......+ 2/41.43
= 1/3-1/5 + 1/5-1/7 + 1/7-1/9 +.....+ 1/41-1/43
= 1/3-1/43
= 40/129.
Tính giá trị biểu thức
A=\(1-\frac{2}{3.5}-\frac{2}{5.7}-\frac{2}{7.9}....-\frac{2}{63.65}\)
\(A=1-\frac{2}{3.5}-\frac{2}{5.7}-\frac{2}{7.9}-...-\frac{2}{63.65}\)
\(A=1-\left(\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{63-65}\right)\)
\(A=1-\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{63}-\frac{1}{65}\right)\)
\(A=1-\left(\frac{1}{3}-\frac{1}{65}\right)\)
\(A=1-\frac{62}{195}\)
\(A=\frac{133}{195}\)
Tính giá trị biểu thức:
A=\(\frac{1^2}{1.3}+\frac{2^2}{3.5}+\frac{3^2}{5.7}+...+\frac{1004^2}{2007.2009}+\frac{1005^2}{2009.2011}+\frac{1006^2}{2011.2013}\)
\(A=\frac{1^2}{1.3}+\frac{2^2}{3.5}+...+\frac{1006^2}{2011.2013}\)
\(\Leftrightarrow4A=\frac{2^2.1^2}{2^2-1}+\frac{2^2.2^2}{4^2-1}+...+\frac{2^2.1006^2}{2012^2-1}\)
\(=1006+\left(\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{2011.2013}\right)\)
\(=1006+\frac{1}{2}\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{2011}-\frac{1}{2013}\right)\)
\(=1006+\frac{1}{2}\left(1-\frac{1}{2013}\right)=\frac{2026084}{2013}\)
\(\Rightarrow A=\frac{506521}{2013}\)
tính giá trị biểu thức
A=\(\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{99.100}\)
\(A=\frac{2}{3.5}+\frac{2}{5.7}+......+\frac{2}{99.100}\)
\(A=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+.....+\frac{1}{99}-\frac{1}{100}\)
\(A=\frac{1}{3}-\frac{1}{100}=\frac{97}{300}\)
A=1/3-1/5+1/5-1/7+...+1/99-1/101 là 2/99.101 nhé bạn mình làm nhiều rồi có lẽ bạn ghi đề sai
A=98/303
Tính giá trị của biểu thức: 1.3 + 3.5 + 5.7 + 7.9 + … + 652665.652667
Chào Shanks :) Cô giải như sau:
Đặt \(A=1.3+3.5+5.7+...+652665.652667\)
\(\Rightarrow6A=1.3.6+3.5.6+5.7.6+...+652665.652667.6\)
\(=1.3.\left(5+1\right)+3.5.\left(7-1\right)+5.7.\left(9-3\right)+...+652665.652667\left(652669-652663\right)\)
\(=1.3.5+3+3.5.7-1.3.5+5.7.9-3.5.7+...+\)
\(...+652665.652667.652669-652663.652665.652667\)
\(=3+652665.652667.652668\)
Vậy \(A=\frac{3+652665.652667.652668}{6}\)
Bài này cho số to quá. Cách làm tổng quát dạng này là ta nhân biểu thức cần tính với 3 lần khoảng cách giữa các số để tạo ra các số đối để triệt tiêu dần cho nhau.
tính giá trị của biểu thức sau:
B= \(\frac{2^3}{3.5}+\frac{2^3}{5.7}+\frac{2^3}{7.9}+....+\frac{2^3}{101.103}\)
Tính giá trị biểu thức sau:
a, A=1/199 - 1/199.198 - 1/198.197 - 1/197.196 -....- 1/3.2 - 1/2.1
b, B=1- 2/3.5- 2/5.7- 2/7.9 -...- 2/61.63 - 2/63.65
tính giá trị biểu thức
B=1.3+3.5+5.7+7.9+...+97.99
Bạn tham khảo nhé!
Ta có: A = 1.3 + 3.5 + 5.7 +…+ 97.99 + 99.101
A = 1.(1 + 2) + 3.(3 + 2) + 5.(5 + 2) + … + 97.(97 + 2) + 99.(99 + 2)
A = (12 + 32 + 52 + … + 972 + 992) + 2.(1 + 3 + 5 + … + 97 + 99).
Đặt B = 12 + 32 + 52 + … + 992
=> B = (12 + 22 + 32 + 42 + … + 1002) – 22.(12 + 22 + 32 + 42 + … + 502)
Tính dãy tổng quát C = 12 + 22 + 32 + … + n2
C = 1.(0 + 1) + 2.(1 + 1) + 3.(2 + 1) + … + n.[(n – 1) + 1]
C = [1.2 + 2.3 + … + (n – 1).n] + (1 + 2 + 3 + … + n)
C = = n.(n + 1).[(n – 1) : 3 + 1 : 2] = n.(n + 1).(2n + 1) : 6
Áp dụng vào B ta được:
B = 100.101.201 : 6 – 4.50.51.101 : 6 = 166650
=> A = 166650 + 2.(1 + 99).50 : 2
=> A = 166650 + 5000 = 172650.
Đ/s: A = 172650.
tính giá trị biểu thức sau:A=1/1.3+1/3.5+1/5.7+1/7.9+...+1/97.99
A= \(\dfrac{1}{1.3}\)+\(\dfrac{1}{3.5}\)+\(\dfrac{1}{5.7}\)+\(\dfrac{1}{7.9}\)+...+\(\dfrac{1}{97.99}\)
2A= 1 - \(\dfrac{1}{3}\)+\(\dfrac{1}{3}\) - \(\dfrac{1}{5}\)+\(\dfrac{1}{5}\) - \(\dfrac{1}{7}\)+\(\dfrac{1}{7}\) - \(\dfrac{1}{9}\)+...+\(\dfrac{1}{97}\)-\(\dfrac{1}{99}\)
2A= 1-\(\dfrac{1}{99}\)
2A= \(\dfrac{98}{99}\)
A= \(\dfrac{98}{99}\) : 2
A=\(\dfrac{49}{99}\)