cho a,b thuoc n thoa man a^2+a=2b^2+b . chung minh rằng a-b và a+b là số chính phương
cac ban oi giup minh voi
1.tim a,b thuoc Z,biet:a.(2b-3)=-6
2.cho x,y thuoc Z thoa man x mu 2 +y mu 2 chia het cho 3.chung to x va y chia het cho 3.
cho 3 so duong a,b,c thoa man a+b+c=1/abc chung minh rang can ((1+b^2c^2)(1+a^2c^2)/c^2+a^2b^2c^2)=a+b
cho a,b,c,d thuoc Z thoa man a+b+c=0.chung minh a^5+b^5+c^5 chia het cho 30
cho a,b,c.d thuoc Z, thoa man a<=b<=c<=d va a+d=c+b Chung minh
a) a^2 +b^2 +c^2 +d^2 la tong 3 so chinh phuong
B) bc >=ad
đồ vô ơn.tao đã giải cho câu a rùi mà ko tick thi thui.xéo
Cho a,b thuộc N thỏa mãn điều kiện 2a2+a=3b2+b
Chứng minh rằng a-b và 2a+2b+1 đều là số chính phương
Có bổ đề sau: \(a^2=pq\) với \(a,p,q\in Z^+\) và \(\left(p,q\right)=1\) thì p,q là hai số chính phương
\(2a^2-2b^2+a-b=b^2\Leftrightarrow\left(a-b\right)\left(2a+2b+1\right)=b^2\)(*)
Gọi d là UWCLN của a-b và 2a+2b+1 ta có từ (*) b chia hết d.
a-b chia hết cho d nên 2a-2b chia hết cho d . Vậy 2a+2b+1-(2a-2b) chia hết d
nên 4b+1 chia hết d mà b chia hết cho d nên 1 chia hết d. Vậy hai số a-b và 2a+2b+1 nguyên tố cùng nhau
Áp dụng bổ đề có đpcm
cho 2 so a,b thoa man : 8.(a2 +b2) =(2a + 2b)2
chung minh rang : a= b .
giup minh bai nay nua nha cac ban ^^
Có: \(8\left(a^2+b^2\right)=\left(2a+2b\right)^2\)
\(\Leftrightarrow8a^2+8b^2=4a^2+8ab+4b^2\)
\(\Leftrightarrow4a^2-8ab+4b^2=0\)
\(\Leftrightarrow a^2-2ab+b^2=0\)
\(\Leftrightarrow\left(a-b\right)^2=0\)
\(\Leftrightarrow a-b=0\Leftrightarrow a=b\)
=> đpcm
8(a2+b2) = (2a + 2b)2
=>8a2+8b2= 4a2 + 8ab + 4b
=> 4a2 + 4b2 = 8ab
=> 4a2 + 4b2 - 8ab = 0
=> (2a - 2b)2 =0
=> 2a - 2b = 0
=> 2(a-b)=0
=>a-b=0
=> a=b
cho a,b khac 0 thoa man a+b=1. chung minh \(\frac{a}{b^3-1}+\frac{b}{a^3-1}=\frac{2\left(ab-2\right)}{a^2b^2+3}\)
cho a,b,c khac 0 va thoa man 2ab+1/2b = 6bc+1/3c = 3ac+1/a chung minh a=2b=3c
1 . Số ab , biết a > b và a + b là hai số nguyên tố
2. Gia tri cua x thuoc N thoa man : 5^2 -3^2 =x^2