cho A=2+2^2+2^3+...+2^60
CMR: A chia hết cho 15
cho A= 2+22+23+...+260 . chứng minh rằng: A chia hết cho 3, chia hết cho 7, chia hết cho 15.
A=2+2^2+2^3+...+2^60
=(2+2^2)+(2^3+2^4)+...+(2^59+2^60)
=2(1+2)+2^3(1+2)+...+2^59(1+2)
=3(2+2^3+...+2^59) chia hết cho 3
A=2+2^2+2^3+...+2^60
=(2+2^2+2^3)+...+(2^58+2^59+2^60)
=2(1+2+2^2)+...+2^58(1+2+2^2)
=7(2+...+2^58) chia hết cho 7
A=2+2^2+2^3+...+2^60
=(2+2^2+2^3+2^4)+...+(2^57+2^58+2^59+2^60)
=2(1+2+2^2+2^3)+...+2^57(1+2+2^2+2^3)
=15(2+...+2^57) chia hết cho 15
A=2+22+23+...+260
chứng minh : A chia hết cho 3 ;chia hết cho 7 ;chia hết cho 5; chia hết cho 15
Cho A= 2+2^2+2^3+2^3+...+2^100
C/m A chia hết cho 15
CM A chia hết cho 465
Cho A= 2+22 +23 +......................+260
Chứng tỏ A chia hết cho 3 , A chia hết cho 7 , a chia hết cho 15
A=2.(1+2)+..........+2^59.(1+2)
A=2.3+.........+2^59.3
A=3.(2+....+2^59) chia hết cho 3
Vậy suy ra A chia hết cho 3
A=2.(1+2+2^2)+........+2^58.(1+2+2^2)
A=2.7+..........+2^58.7
A=7.(2+.....+2^58) chia hết cho 7
Vậy A chia hết cho 7
A=2.(1+2+2^2+2^3)+.........+2^57.(1+2+2^2+2^3)
A=2.15+...........+2^57.15
A=15.(2+2^57) chia hết cho 15
Vậy A chia hết cho 15
Cho A = 2+22+23+24+...+258+259+260. CMR: a) A chia hết cho 3, b) A chia hết cho 7, c) A chia hết cho 15
a) A = 2 + 2^2 + ... + 2^58 + 2^59 + 2^60
A = 2 ( 2 + 1 ) + 2^3 ( 2 + 1 ) + ... + 2^59 ( 2 + 1)
A = 3 .2 + 3.2^3 + ... + 3.2^59
A = 3 ( 2 + 2^3 + ... + 2^59 ) luôn chia hết cho 3
Ta có A = 2+22 + 23 + .....+ 259 + 260
= ( 2+ 22 + 23) +....+ (258 + 259 + 260)
= 2(1+2+4) +....+ 258( 1+2+4)
= 2 .7+24.7 +....+ 258 . 7
= 7( 2+24 + ....+ 258)
=> A chia hết cho 7
cho A = 1+2+2 mũ 2 + 2 mũ 3 + ...+2 mũa 99
a> tính a
b> chứng minh a chia hết cho 3
c> chứng minh a chia hết cho 15
\(a,2A=2+2^2+2^3+...+2^{100}\\ \Rightarrow2A-A=2+2^2+...+2^{100}-1-2-...-2^{99}\\ \Rightarrow A=2^{100}-1\\ b,A=\left(1+2\right)+2^2\left(1+2\right)+...+2^{98}\left(1+2\right)\\ A=\left(1+2\right)\left(1+2^2+...+2^{98}\right)=3\left(1+2^2+...+2^{98}\right)⋮3\\ c,A=\left(1+2+2^2+2^3\right)+...+2^{96}\left(1+2+2^2+2^3\right)\\ A=\left(1+2+2^2+2^3\right)\left(1+...+2^{96}\right)=15\left(1+...+2^{96}\right)⋮15\)
Chứng minh rằng:
a, M = 8^8 + 2^20 chia hết cho 7
b, A = 10^28 + 8 chia hết cho 72
c, T = 2 + 2^2 + 2^3 + … + 2^60 chia hết cho 3, 7, 15
1, Chứng minh: A= 2+2^2+2^3+..........................+2^59+2^60
a, A chia hết cho 3
b, A chia hết cho 7
c, A chia hết cho 15
A = 2 + 22 + 23 + ... + 260
= (2 + 22) + (23 + 24) + ... + (259 + 260)
= 2.(1 + 2) + 23.(1 + 2) + ... + 259.(1 + 2)
= 2.3 + 23.3 + ... + 259.3
= 3.(2 + 23 + ... + 259) chia hết cho 3
A = 2 + 22 + 23 + ... + 260
= (2 + 22 + 23) + (24 + 25 + 26) + ... + (258 + 259 + 260)
= 2.(1 + 2 + 22) + 24.(1 + 2 + 22) + ... + 258.(1 + 2 + 22)
= 2.7 + 24.7 + ... + 258.7
= 7.(2 + 24 + ... + 258) chia hết cho 7
A = 2 + 22 + 23 + ... + 260
= (2 + 22 + 23 + 24) + (25 + 26 + 27 + 28) + ... + (257 + 258 + 259 + 260)
= 2.(1 + 2 + 22 + 23) + 25.(1 + 2 + 22 + 23) + ... + 257.(1 + 2 + 22 + 23)
= 2.15 + 25.15 + ... + 257.15
= 15.(2 + 25 + ... + 257) chia hết cho 15
a)A= 2+2^2+2^3+...+2^59+2^60
A=(2+2^2)+(2^3+2^4)+(2^5+2^6)+...+(2^59+2^60)
A=2.(1+2)+2^3.(1+2)+2^5.(1+2)+...+2^59.(1+2)
A=2.3+2^3.3+2^5.3+...+2^59.3
A=3.(2+2^3+2^5+...+2^59)
=>A chia hết cho 3
Vậy A chia hết cho 3
b)A= 2+2^2+2^3+..........................+2^59+2^60
A=(2+2^2+2^3)+(2^4+2^5+2^6)+(2^7+2^8+2^9)+...+(2^58+2^59+2^60)
A=2.(1+2+2^2)+2^4.(1+2+2^2)+2^7.(1+2+2^2)+...+2^58.(1+2+2^2)
A=2.7+2^4.7+2^7.7+...+2^58.7
A=7.(2+2^4+2^7+...+2^58)
=>A chia hết cho 7
Vậy A chia hết cho 7
c)A= 2+2^2+2^3+..........................+2^59+2^60
A=(2+2^2+2^3+2^4)+(2^5+2^6+2^7+2^8)+(2^9+2^10+2^11+2^12)+...+(2^57+2^58+2^59+2^60)
A=2.(1+2+2^2+2^3)+2^5.(1+2+2^2+2^3)+2^9.(1+2+2^2+2^3)+...+2^57.(1+2+2^2+2^3)
A=2.15+2^5.15+2^9.15+...+2657.15
A=15.(2+2^5+2^9+...+2^57)
=>A chia hết cho 15
Vậy A chia hết cho15
A = 2 + 22 + ... + 2120
Chứng minh A chia hết cho 3, A chia hết cho 7, A chia hết cho 15
A = 2 + 22 + ... + 2120
Chứng minh chia hết cho 3
A = ( 2 + 22 ) + ( 23 + 24 ) + ... + ( 2119 + 2120 )
= 2( 1 + 2 ) + 23( 1 + 2 ) + ... + 2119( 1 + 2 )
= 2.3 + 23.3 + ... + 2119.3
= 3( 2 + 23 + ... + 2119 ) chia hết cho 3 ( đpcm )
Chứng minh chia hết cho 7
A = ( 2 + 22 + 23 ) + ( 24 + 25 + 26 ) + ... + ( 2118 + 2119 + 2120 )
= 2( 1 + 2 + 22 ) + 24( 1 + 2 + 22 ) + ... + 2118( 1 + 2 + 22 )
= 2.7 + 24.7 + ... + 2118.7
= 7( 2 + 24 + ... + 2118 ) chia hết cho 7 ( đpcm )
Chứng minh chia hết cho 15
A = ( 2 + 22 + 23 + 24 ) + ( 25 + 26 + 27 + 28 ) + ... + ( 2117 + 2118 + 2119 + 2120 )
= 2( 1 + 2 + 22 + 23 ) + 25( 1 + 2 + 22 + 23 ) + ... + 2117( 1 + 2 + 22 + 23 )
= 2.15 + 25.15 + ... + 2117.15
= 15( 2 + 25 + ... + 2117 ) chia hết cho 15 ( đpcm )
1) Ta có: \(A=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{119}+2^{120}\right)\)
\(A=2\left(1+2\right)+2^3\left(1+2\right)+...+2^{119}\left(1+2\right)\)
\(A=3\left(2+2^3+...+2^{119}\right)\) chia hết cho 3
2) Ta có: \(A=\left(2+2^2+2^3\right)+\left(2^4+2^5+2^6\right)+...+\left(2^{118}+2^{119}+2^{120}\right)\)
\(A=2\left(1+2+2^2\right)+2^4\left(1+2+2^2\right)+...+2^{118}\left(1+2+2^2\right)\)
\(A=7\left(2+2^4+...+2^{118}\right)\) chia hết cho 7
3) Ta có: \(A=\left(2+2^2+2^3+2^4\right)+...+\left(2^{117}+2^{118}+2^{119}+2^{120}\right)\)
\(A=2\left(1+2+2^2+2^3\right)+...+2^{117}\left(1+2+2^2+2^3\right)\)
\(A=15\left(2+2^5+...+2^{117}\right)\) chia hết cho 15
2, Tìm số tn có 2 c/s giống nhau biết số đó chia hết cho 2,còn khi chia cho 5 thì dư 1
3, cho số : A = 2 + 2^2 + 2^3 + 2^4 + ... + 2^59 + 2^60
a,A chia hết cho 3
b,A chia hết cho 7
c,A chia hết cho 15