Tìm số tự nhiên m,n sao cho 2m + 5n là số chính phương
b) Tìm các số tự nhiên n sao cho n^4 + 4n^3 + 5n^2 + 3n + 3 là số chính phương.
Tìm các số tự nhiên m,n sao cho 22m+22n là số chính phương
Giả sử \(m\ge n\).
Ta có: \(2^{2m}+2^{2n}=4^m+4^n=4^n\left(4^{m-n}+1\right)\).
Đặt \(4^{m-n}+1=l^2\Leftrightarrow4^{m-n}=\left(l-1\right)\left(l+1\right)\)
Dễ thấy với các trường hợp của \(m-n\)thì không có \(l\)thỏa mãn.
Vậy phương trình vô nghiệm.
Bạn giải chi tiết hợn được không?
Mình giải chi tiết hơn đoạn "Dễ thấy".
\(4^{m-n}=\left(l-1\right)\left(l+1\right)\)
- \(m-n=0\): \(\left(l-1\right)\left(l+1\right)=1\)(không có nghiệm nguyên)
- \(m-n=1\): \(\left(l-1\right)\left(l+1\right)=4\)(không có nghiệm nguyên)
- \(m-n>1\): Do \(l-1\)và \(l+1\)là hai số tự nhiên cùng tính chẵn lẻ liên tiếp nên tích của chúng không là lũy thừa của \(4\).
a. tìm a là số tự nhiên để 17a+8 là số chính phương
b. tìm a là số tự nhiên để 13a+a là số chính phương
c. tìm n là số tự nhiên sao cho 3n+4 là số chính phương
d. tìm n là số tự nhiên sao cho 2n+9 là số chính phương
a. tìm a là số tự nhiên để 17a+8 là số chính phương
Giả sử \(17a+8=x^2\Rightarrow17a-17+25=x^2\Rightarrow17\left(a-1\right)=x^2-25\Rightarrow17\left(a-1\right)=\left(x-5\right)\left(x+5\right)\)
\(\Rightarrow\left(x-5\right);\left(x+5\right)⋮17\)
\(\Rightarrow x=17n\pm5\Rightarrow a=17n^2\pm10n+1\)
Tìm các số tự nhiên n sao cho n! +14 là số chính phương
Tìm cá số tự nhiên n sao cho n! + 19 là số chính phương
Cho m ,n là 2 số tự nhiên thỏa mãn 4m2 +m = 5n2 +n. Chứng minh rằng m-n và 5m+5n +1 là số chính phương
Để giải được bài toán sau thì ta liên tưởng đến một tính chất rất đặc biệt và hữu ích được phát biểu như sau:
\("\) Nếu \(a,b\) là hai số tự nhiên nguyên tố cùng nhau và \(a.b\) là một số chính phương thì \(a\) và \(b\) đều là các số chính phương \("\)
Ta có:
\(4m^2+m=5n^2+n\)
\(\Leftrightarrow\) \(4m^2+m-5n^2-n=0\)
\(\Leftrightarrow\) \(5m^2-5n^2+m-n=m^2\)
\(\Leftrightarrow\) \(5\left(m^2-n^2\right)+\left(m-n\right)=m^2\)
\(\Leftrightarrow\) \(\left(m-n\right)\left(5m+5n+1\right)=m^2\) \(\left(\text{*}\right)\)
Gọi \(d\) là ước chung lớn nhất của \(m-n\) và \(5m+5n+1\) \(\left(\text{**}\right)\), khi đó:
\(m-n\) chia hết cho \(d\) \(\Rightarrow\) \(5\left(m-n\right)\) chia hết cho \(d\)
\(5m+5n+1\) chia hết cho \(d\)
nên \(\left[\left(5m+5n+1\right)+5\left(m-n\right)\right]\) chia hết cho \(d\)
\(\Leftrightarrow\) \(10m+1\) chia hết cho \(d\) \(\left(1\right)\)
Mặt khác, từ \(\left(\text{*}\right)\), với chú ý cách gọi ở \(\left(\text{**}\right)\), ta suy ra được: \(m^2\) chia hết cho \(d^2\)
Do đó, \(m\) chia hết cho \(d\)
\(\Rightarrow\) \(10m\) chia hết cho \(d\) \(\left(2\right)\)
Từ \(\left(1\right)\) và \(\left(2\right)\), ta có \(1\) chia hết cho \(d\) \(\Rightarrow\) \(d=1\)
Do đó, \(m-n\) và \(5m+5n+1\) là các số tự nhiên nguyên tố cùng nhau
Kết hợp với \(\left(\text{*}\right)\) và điều mới chứng minh trên, thỏa mãn tất cả các điều kiện cần thiết ở tính chất nêu trên nên ta có đpcm
Vậy, \(m-n\) và \(5m+5n+1\) đều là các số chính phương.
tìm số tự nhiên n sao cho 4^m+2^n +29 không thể là số chính phương với mọi số tự nhiên m
nếu m, n là các số tự nhiên thỏa mãn: 4m2+m= 5n2+n thì m-n và 5m+5n+1 đều là số chính phương
bạn thi hsg ak bài nay dễ mak
có 4m^2+m=5n^2+n
<=>m-n+5m^2-5n^2=m^2
<=>(m-n)(5m+5n+1)=m^2 (1)
gọi ƯCLN(m-n;5m+5n+1)=d ta c/m d=1
có m-n chia hết d; m,n là các số tự nhiên
<=>5m-5n chia hết d
và có 5m+5n+1 chia hết d
=>10m+1 chia hết d (2)
(1)=> m^2 chia hết cho d
=>m chia hết d (m là số tự nhiên)
=>10m chia hết cho d (3)
từ (2),(3)=>1 chia hết cho d
=>d =1 (4)
từ (1),(4)=>đpcm.
bài này phải áp dụng kiến thức lớp 6 vào .
Nếu m,n là các số tự nhiên thỏa mãn: 4m2+m=5n2+n thì m-n và 5m+5n+1 đều là số chính phương
4m2 + m = 5n2 + n <=> (5m2 - 5n2) + (m - n) = m2 <=> 5.(m - n).(m + n) + (m - n) = m2
<=> (m - n).(5m + 5n + 1) = m2 (1)
Gọi d = ƯCLN (m- n; 5m + 5n + 1)
=> m - n chia hết cho d và 5m + 5n+ 1 chia hết cho d
=> m2 = (m - n).(5m + 5n + 1) chia hết cho d2
=> m chia hết cho d
lại có: 5.(m - n) + (5m + 5n + 1) = 10m + 1 chia hết cho d
10m chia hết cho d nên 1 chia hết cho d
=> m - n và 5m + 5n + 1 nguyên tố cùng nhau (2)
Từ (1)(2) => m - n; 5m + 5n + 1 đều là số chính phương
Ta có:
4m2 + m
= 5n2 + n
<=> (5m2 - 5n2) + (m - n) = m2
<=> 5.(m - n).(m + n) + (m - n) = m2
<=> (m - n).(5m + 5n + 1) = m2 (*)
Gọi d = ƯCLN (m- n; 5m + 5n + 1)
=> m - n chia hết cho d và 5m + 5n+ 1 chia hết cho d
=> m2 = (m - n).(5m + 5n + 1) chia hết cho d2
=> m chia hết cho d
Ta lại có: 5.(m - n) + (5m + 5n + 1) = 10m + 1 chia hết cho d
10m chia hết cho d nên 1 chia hết cho d
=> m - n và 5m + 5n + 1 nguyên tố cùng nhau (**)
Từ (*)(**) => m - n; 5m + 5n + 1 đều là số chính phương
hok tốt
Tìm số tự nhiên m và n sao cho 6^m+2^n+2 là số chính phương
Đặt A = m2 + n2 + 2.m.n +m + 3n + 2 ta có :
A > m2 +n2 + 2.m.n =( m+n )2 ;
và A<m2 +n2 + 4 +2.m.n + 4.m+ 4n = ( m+n+ 2 )2
Vậy A nằm giữa hai số chính phương liên tiếp nên :
A chính phương <=> A = ( m + n + 1 )2
<=> A = m2 + n2 + 2.m.n + 2.m + 2.n + 1 <=> m = n + 1
Vậy n \(\in\)N tùy ý và m = n+ 1
1,tìm n biết 5n+7chia hết cho 3n+2
2,tìm số tự nhiên n sao cho tổng A=1!+2!+3!+....+n! là một só chính phương
3,CMR:mếu 8p-1 và p là các số nguyên tố thì8p+1là hợp số
mọi người giúp mình với nha