tinh a^4+b^4+c^4 biết: a+b+c=0 và a^2+b^2+c^2=2
cho a+b+c=0 va a^2+b^2+c^2=2 tinh a^4+b^4+c^4
a+b+c=0 => (a+b+c)^2=0 <=> a^2+b^2+c^2+2(ab+bc+ca)=0
<=> 2+2(ab+bc+ca)=0 => ab+bc+ca=-1
(ab+bc+ca)^2=(ab)^2+(bc)^2+(ca)^2+2ab^2c+2abc^2+2a^2bc=(ab)^2+(bc)^2+(ca)^2+2abc(a+b+c)
=> (ab)^2+(bc)^2+(ca)^2 = (-1)^2 = 1
(a^2+b^2+c^2)^2 = a^4+b^4+c^4+2[(ab)^2+(bc)^2+(ca)^2] = a^4+b^4+c^4 + 2
<=>4=a^4+b^4+c^4+2 => a^4+b^4+c^4 = 2
Bạn kiểm tra lại có sai chỗ nào không nhé
cho a+b+c=0 va a^2+b^2+c^2=1 tinh a^4+b^4+c^4
Cho a + b + c = 0 v a^2 + b^2 + c^2 = 2. Tinh a^4 + b^4 + c^4
Cho a+b+c=0,a^2+b^2+c^2=1
Tinh a^4+b^4+c^4
a+b+c=0
=>(a+b+c)2=0
=>a2+b2+c2+2(ab+bc+ca)=0
Do a2+b2+c2=1
=>2(ab+bc+ca)=-1
=>ab+bc+ca=-0,5
=>(ab+bc+ca)2=0,25
=>a2b2+b2c2+c2a2+2abc(a+b+c)=0,25
=>a2b2+b2c2+c2a2=0,25(do a+b+c=0)
Từ a2+b2+c2=1
=>(a2+b2+c2)2=1
=>a4+b4+c4+2(a2b2+b2c2+c2a2)=1
=>a4+b4+c4+2.0,25=1
=>a4+b4+c4+0,5=1
=>a4+b4+c4=0,5
Cho a+b+c=0 và a2+b2+c2=1
Tinh M=a4+b4+c4
Ta có : \(a+b+c=0\Leftrightarrow\left(a+b+c\right)^2=0\Leftrightarrow a^2+b^2+c^2+2\left(ab+bc+ac\right)=0\Leftrightarrow ab+bc+ac=-\frac{1}{2}\)
\(\Leftrightarrow\left(ab+bc+ac\right)^2=\frac{1}{4}\Leftrightarrow\left(a^2b^2+b^2c^2+c^2a^2\right)+2abc\left(a+b+c\right)=\frac{1}{4}\Rightarrow a^2b^2+b^2c^2+c^2a^2=\frac{1}{4}\)
Mặt khác : \(\left(a^2+b^2+c^2\right)^2=1\Leftrightarrow a^4+b^4+c^4+2\left(a^2b^2+b^2c^2+c^2a^2\right)=1\)
\(\Rightarrow a^4+b^4+c^4=1-2\left(a^2b^2+b^2c^2+c^2a^2\right)\Rightarrow a^4+b^4+c^4=\frac{1}{2}\)
(a+b+c)^2=a^2+b^2+c^2+2ab+2bc+2ac=0 => 2ab+2bc+2ac= -1 =>ab+bc+ac=-1/2
=>(ab+bc+ac)^2=1/4=0.25 =>a^2b^2+b^2c^2+a^2c^2+2a^2bc+ab^2c+abc^2=0.25
=>a^2b^2+b^2c^2+a^2c^2+2abc(a+b+c)=0.25
=>a^2b^2+b^2c^2+a^2c^2=0.25 =>2a^2b^2+2b^2c^2+2a^2c^2=0.5 (1)
Mà (a^2+b^2+c^2)^2=a^4+b^4+c^4+2a^2b^2+2b^2c^2+2a^2c^2=1 (2)
Thay (1) vào (2) =>a^4+b^4+c^4=1-0.5=0.5
Vậy M=0.5
a+b+c=0 nên(a+b+c)^2=0 suy ra a^2+b^2+c^2 +2(ab+bc+ca)=0
a^2+b^2+c^2=-[2(ab+bc+ca)]
(a^2+b^2+c^2)^2 = [2(ab+bc+ca)]^2( bình phương nên bỏ mất dấu âm)
a^4+b^4+c^4+2(a^2.b^2+b^2.c^2+c^2.a^2)=4(a^2.b^2+b^2.c^2+c^2.a^2) +8abc(a+b+c)
a^4+b^4+c^4=2(a^2.b^2+b^2.c^2+c^2.a^2)=1/2(vì 8abc(a+b+c)=0, bỏ 2(a^2.b^2+b^2.c^2+c^2.a^2) ở cả hai vế và a^2+b^2+c^2=1 nên (a^2+b^2+c^2)^2=1 do đó 4(a^2.b^2+b^2.c^2+c^2.a^2)=1)
tính giá trị biểu thức a) a^4+b^4+c^4 biết a+b+c=0 và a^2+b^2+c^2 =2
tính giá trị biểu thức a) a^4+b^4+c^4 biết a+b+c=0 và a^2+b^2+c^2 =2
lại nhầm lần này đúng
(a+b+c)2=a2+b2+c2+2ac+2bc+2ab
=>02=2+2(ac+bc+ab)
=>ac+bc+ab=2:2=-1
=>(-1)2=a2b2+b2c2+a2c2+2a2bc+2b2ac+2c2ab
(-1)2=a2b2+b2c2+a2c2+2abc(a+b+c)
=>1=a2b2+b2c2+a2c2+2abc.0
=>a2b2+b2c2+a2c2=1
(a2+b2+c2)2=a4+b4+c4+2a2b2+2b2c2+2a2c2
(a2+b2+c2)2=a4+b4+c4+2(a2b2+b2c2+a2c2)
22=a4+b4+c4+2.1
4=a4+b4+c4+2
=>a4+b4+c4=2
trieu dang làm sai đoạn cuối rồi
tính giá trị biểu thức a) a^4+b^4+c^4 biết a+b+c=0 và a^2+b^2+c^2 =2
(a+b+c)2=a2+b2+c2+2ac+2bc+2ab
=>02=2+2(ac+bc+ab)
=>ac+bc+ab=2:2=-1
=>(-1)2=a2b2+b2c2+a2c2+2a2bc+2b2ac+2c2ab
(-1)2=a2b2+b2c2+a2c2+2abc(a+b+c)
=>1=a2b2+b2c2+a2c2+2abc.0
=>a2b2+b2c2+a2c2=1
(a2+b2+c2)2=a4+b4+c4+2a2b2+2b2c2+2a2c2
(a2+b2+c2)2=a4+b4+c4+2(a2b2+b2c2+a2c2)
22=a4+b4+c4+2.1
4=a4+b4+c4+2
=>a4+b4+c4=2
Tính giá trị biểu thức a^4+b^4+c^4 biết a+b+c = 0 và a^2+b^2+c^2=2
\(a+b+c=0\Leftrightarrow\left(a+b+c\right)^2=0\Leftrightarrow a^2+b^2+c^2+2\left(ab+bc+ca\right)=0\)
\(\Leftrightarrow2+2\left(ab+bc+ca\right)=0\Leftrightarrow ab+bc+ca=-1\Rightarrow\left(ab+bc+ca\right)^2=1\)
\(\Leftrightarrow a^2b^2+b^2c^2+c^2a^2+2ab^2c+2abc^2+2a^2bc=1\)
\(\Leftrightarrow a^2b^2+b^2c^2+c^2a^2+2abc\left(a+b+c\right)=1\)
\(\Leftrightarrow a^2b^2+b^2c^2+c^2a^2+2abc.0=1\)
\(\Leftrightarrow a^2b^2+b^2c^2+c^2a^2=-1\)
Xét \(a^2+b^2+c^2=2\Rightarrow\left(a^2+b^2+c^2\right)^2=4\Leftrightarrow a^4+b^4+c^4+2\left(a^2b^2+b^2c^2+c^2a^2\right)=4\)
\(\Leftrightarrow a^4+b^4+c^4+2\left(-1\right)=4\Leftrightarrow a^4+b^4+c^4=6\)