Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
tramy
Xem chi tiết
Trên con đường thành côn...
13 tháng 7 2021 lúc 9:50

undefined

ngothithuyhien
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
7 tháng 7 2018 lúc 2:38

Thực hiện phép tính đối với vế trái của mỗi đẳng thức.

Hồ Vân
Xem chi tiết
Lê Tài Bảo Châu
4 tháng 1 2020 lúc 8:18

Áp dụng bđt AM-GM ta có:

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge3\sqrt[3]{\frac{1}{abc}}\)

\(a+b+c\ge3\sqrt[3]{abc}\)

Nhân 2 vế của đẳng thức trên ta được:

\(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9\)

\(\Rightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}\)

Khách vãng lai đã xóa
ミ★ 🆂🆄🅽 ★彡
14 tháng 4 2020 lúc 15:16

Áp dụng BDT svacxo ta có:

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{\left(1+1+1\right)^2}{a+b+c}=\frac{9}{a+b+c}\)

Dấu = khi a=b=c

Học tốt

Khách vãng lai đã xóa
ミ★FF  BӨYΛΉΉ★彡
14 tháng 4 2020 lúc 15:20

Trả lời :

- Hai bn kia làm đúng

- Chúc học tốt

- Tk cho mk nha

Khách vãng lai đã xóa
Triệu Ngọc Minh
Xem chi tiết
Nguyễn Lê Quân
Xem chi tiết
Đinh Thùy Linh
24 tháng 6 2016 lúc 0:22

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{a+b+c}{a}+\frac{a+b+c}{b}+\frac{a+b+c}{c}=1+\frac{b}{a}+\frac{c}{a}+1+\frac{a}{b}+\frac{c}{b}+1+\frac{a}{c}+\frac{b}{c}.\)

\(=3+\left(\frac{a}{b}+\frac{b}{a}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)+\left(\frac{a}{c}+\frac{c}{a}\right)\)

Theo Cosy với a;b;c >0

 \(\frac{a}{b}+\frac{b}{a}\ge2\sqrt{\frac{a}{b}\cdot\frac{b}{a}}=2\);\(\frac{b}{c}+\frac{c}{b}\ge2\sqrt{\frac{b}{c}\cdot\frac{c}{b}}=2\);\(\frac{a}{c}+\frac{c}{a}\ge2\sqrt{\frac{a}{c}\cdot\frac{c}{a}}=2\)

Do đó: \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge3+2+2+2=9\)đpcm.

Dấu "=" khi a=b=c=1/3.

Chi Khánh
Xem chi tiết
Chi Khánh
Xem chi tiết
Kuruishagi zero
Xem chi tiết
Incursion_03
7 tháng 12 2018 lúc 23:17

a, \(\left(a+1\right)^2\ge4a\)

\(\Leftrightarrow a^2+2a+1\ge4a\)

\(\Leftrightarrow a^2-2a+1\ge0\)

\(\Leftrightarrow\left(a-1\right)^2\ge0\)(Luôn đúng)

b, Áp dụng bđt Cô-si

\(a+1\ge2\sqrt{a}\)

\(b+1\ge2\sqrt{b}\)

\(c+1\ge2\sqrt{c}\)

\(\Rightarrow\left(a+1\right)\left(b+1\right)\left(c+1\right)\ge2\sqrt{a}.2\sqrt{b}.2\sqrt{c}\)

                                                               \(=8\sqrt{abc}=8\)(ĐPCM)

Dấu "=" khi a = b = c =1

Lê Thị Mỹ Duyên
7 tháng 12 2018 lúc 23:22

a, \(\left(a-1\right)^2\ge0\)

\(\Rightarrow a^2-2a+1\ge0\)

\(\Leftrightarrow a^2+2a+1>4a\)

\(\Leftrightarrow\left(a+1\right)^2\ge4a.\)

b, Áp dụng bất đẳng thức trên ta có :

( a + 1 )2 > 4a \(\Leftrightarrow\) \(\sqrt{\left(a+1\right)^2}\ge2\sqrt{a}\)

mà \(\sqrt{\left(a+1\right)^2}=\left|a+1\right|\)

Do a > 0 nên a + 1 > 0. Vậy | a + 1 | = a + 1.

Khi đó : a + 1 > \(2\sqrt{a}\)

Tương tự ta có : 

b + 1 > \(2\sqrt{b}\)và c + 1 > \(2\sqrt{c}\)

=> ( a + 1 ) ( b + 1 ) ( c + 1 ) > \(8\sqrt{abc}=8.\)