Tính giá trị biểu thức B=12+22+32+...+992+1002
Tính giá trị biểu thức B=1^2+2^2+3^2+...+99^2+100^2
Giải:
\(B=1+2\cdot\left(1+1\right)+3\cdot\left(2+1\right)+...+99\cdot\left(98+1\right)+100\cdot\left(99+1\right)\)
\(B=1+1\cdot2+2\cdot3\cdot3+...+98\cdot99+99+99\cdot100+100\)
\(B=\left(1\cdot2+2\cdot3+3\cdot4+...+99\cdot100\right)+\left(1+2+3+...+99+100\right)\)
\(B=333300+5050\)
\(B=3338050\)
Tính giá trị các biểu thức sau:
a) A = 1 − 2 + 3 − 4 + ... + 97 − 98 + 99 − 100
b) B = 1 − 2 − 3 + 4 + 5 − 6 − 7 + ... + 97 − 98 − 99 + 100
a)
C = 1 − 2 + 3 − 4 + ... + 97 − 98 + 99 − 100 = 1 − 2 + 3 − 4 + ... + 97 − 98 + 99 − 100 = − 1 + − 1 + ... + − 1 + − 1 = − 1.50 = − 50.
b)
B = 1 − 2 − 3 + 4 + 5 − 6 − 7 + ... + 97 − 98 − 99 + 100 = 1 − 2 + − 3 + 4 + 5 − 6 + ... + 97 − 98 + − 99 + 100 = − 1 + 1 + − 1 + ... + − 1 + 1 = − 1 + 1 + − 1 + 1 + ... + − 1 + 1 − 1 = 0 + 0 + ... + 0 − 1 = − 1.
Tính giá trị biểu thức:
B= 9/ 1. 2- 9/ 2. 3- 9/ 3. 4..... - 9/ 98. 99- 9/ 99. 100
\(\frac{9}{1.2}+\frac{9}{2.3}+\frac{9}{3.4}+...+\frac{9}{99.100}\)
=\(9.\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\right)\)
=\(9.\left(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\right)\)
=\(9.\left(\frac{1}{1}-\frac{1}{100}\right)\)
=\(9.\frac{99}{100}\)
=\(\frac{891}{100}\)
Tính giá trị biểu thức:
101+100+.......+3+2+1 / 101-100+99-98+......+3-2+1
a)101+100+...+3+2+1
số số hạng:(101-1):1+1=101
tổng: (101+1)*101:2=5151
Câu trả lời : A= (101-100) + (99-98) + ... + (5-4) + (3-2) +1
A= 1 + 1 + ... + 1 + 1 + 1
A= 1 x 51
A= 51
A=101+100+...........+3+2+1
=>Số số hạng:(101-1):1+1=101
=>Số cặp:101:2=101/2
=>Tổng là:(101+1)x101/2=102x101/2=101x51=...........(tự tính nha)
Tính giá trị biểu thức:
101+100+........+3+2+1/101-100+99-98+............+3-2+1
Ta thấy: 101+100+99+98+...+3+2+1 có(101-1+1=101 số)
Tổng của tử số của A là:
(101+1).101:2=5151.
Mẫu số cũng có số hạng bằng số hạng tử số,có số cặp ở mẫu là:
101:2=50(dư 1 số)(số 1).
Vậy tổng mẫu số của A là :
(101-100).50+1=51.
Vậy
A=5151:51=101
Tính giá trị biểu thức: 1/1*2+1/2*3+1/3*4+•••••+1/99*100 = ?
Cách tìm BCNN:
Bước 1: Phân tích mỗi số ra thừa số nguyên tố.Bước 2: Chọn ra các thừa số nguyên tố chung và riêng.Bước 3: Lập tích các thừa số đã chọn, mỗi thừa số lấy với số mũ lớn nhất của nó. Tích đó là BCNN cần tìm.Tính giá trị của biểu thức sau:
1/1 * 2 + 1/2 * 3 + .................... + 1/98 * 99 + 1/99 * 100
\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{98.99}+\frac{1}{99.100}\)
\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{98}-\frac{1}{99}+\frac{1}{99}-\frac{1}{100}\)
\(=\frac{1}{1}-\frac{1}{100}=\frac{99}{100}\)
ĐẶT : A= \(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{98.99}\)\(\)
= \(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{98}-\frac{1}{99}\)
= \(1-\frac{1}{99}=\frac{98}{99}\)
Gọi tổng đó là S
TA có : S = \(\frac{1}{1.2}+\frac{1}{2.3}+......\frac{1}{98.99}+\frac{1}{99.100}\)
S = \(\frac{1}{1.2}-\frac{1}{99.100}=\frac{1}{2}-\frac{1}{9900}=\frac{4949}{9900}\)
Vậy S = \(\frac{4949}{9900}\)
tính giá trị của biểu thức
1^2 - 2^2 + 3^2 - 4^2 +..........+ 99^2 - 100^2 + 101^2
\(1^2-2^2+3^2-4^2+...-100^2+101^2\)
\(\left(1-2\right).\left(1+2\right)+\left(3-4\right)\left(3+4\right)\)\(+...+\left(99-100\right).\left(99+100\right)+101^2\)
\(-3-7-11-...-199+101^2\)
\(101^2-\left(3+7+11+...+199\right)\)
Ta de thay :(3+7+11+ . . .+199) la 1 cap so cong co d=4 ,n=50
\(101^2-\left(199+3\right)\cdot50:2\)
\(=5151\)
Tính giá trị biểu thức
1•2 + 2•3 + 3•4 +........+ 99•100
ĐẶT A = 1.2 + 2.3 + 3.4 + ... + 99.100
3A = 1.2.3 + 2.3.3 + 3.4.3 + ... + 99.100.3
3A = 1.2.3 + 2.3.(4-1) + 3.4.(5-2) + ... + 99.100.(101-98 )
3A = 1.2.3 + 2.3.4 - 1.2.3 + 3.4.5 - 2.3.4 + ... + 99.100.101 - 98.99.100
3A = 99.100.101
A = 99.100.101 : 3
A = 333300