A =1+2+3+4+5+...+99+100
B =1/2+1/6+1/12+1/20+1/30+...+1/9900
A=1+2+3+4+5+....+99+100
B=1\2+1\6+1\12+1\20+1\30+....+1\9900
\(A=1+2+3+4+5+...+99+100\)
Dãy trên có số số hạng là:
(100 - 1) + 1 = 100 (số hạng)
Tổng \(A=\frac{\left(100+1\right)\cdot100}{2}=5050\)
\(B=\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{9900}\)
\(B=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{99.100}\)
\(B=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
\(B=1-\frac{1}{100}\)
\(\Rightarrow B=\frac{99}{100}\)
~Học tốt~
Tính A=1+2+3+4+5+...+99+100
B=1/2+1/6+1/12+1/20+1/30+...+1/9900
A:tính số số hạng (100 số).
=>A=(1+100)*100:2=5050.
B=1/1*2+1/2*3+1/3*4+000+1/99*100.
=>B=1-1/2+1/2-1/3+1/3-1/4+...+1/99-1/100.
=>B=1-1/100=99/100.
tk mk nha.đúng 1000% .
-chúc ai tk cho mk học giỏi và may mắn,thanks các bn nhìu-
a=100(100+1)/2
B=1-1/2+1/2-1/3+1/3-1/4+1/4-1/5+...+1/99-1/100
B=1-1/100=99/100
tính A=1+2+3+4+5+...+99+100
B=1/2+1/6+1/12+1/20+1/30+...+1/9900
Câu A tự làm nhé! Tính số số hạng rồi tính tổng
B = 1/1.2 + 1/2.3 + 1/3.4 +.....+ 1/99.100
B = 1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 +........+ 1/99 - 1/100
B = 1 - 1/100
B = 99/100
Tính:
A=1+2+3+4+5+...+99+100
B=1/2+1/6+1/12+1/20+1/30+...+1/9900
Mời các cao nhân
A = 1 + 2 + 3 + 4 + 5 + ... + 99 + 100
Số số hạng của dãy số đó là:
( 100 - 1 ) : 1 + 1 = 100
Tổng của dãy số đó là:
( 100 + 1 ) . 100 : 2 = 5050
=> A = 5050
\(B=\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+...+\frac{1}{9900}\)
\(B=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+...+\frac{1}{99.100}\)\(B=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{99}-\frac{1}{100}\)
\(B=1-\frac{1}{100}\)
\(B=\frac{99}{100}\)
a = 5050
b = 0,99
Tính: A=1+2+3+4+5+...+99+100. B=1/2+1/6+1/12+1/20+1/30+...+1/9900
Phần A=1+2+3+4+5+.....+99+100
số số hạng của A là : (100-1) : 1 + 1 = 100 (số hạng)
tổng dáy số trên là : (100+1) x 100 : 2 =5050
Phần B=1/2+1/6+1/12+1/20+1/30+...+1/9900
=1/1.2 + 1/2.3 +1/3.4 +1/4.5 +1/5.6 +...+ 1/99.100 Lưu ý:dấu chấm là dấu nhân
=1-1/2 + 1/2-1/3 + 1/3-1/4 + 1/4-1/5 + 1/5-1/6 + ... + 1/99-1/100
=1-1/100
=99/100
A=100x101:2=5050
B= 1/1.2+1/2.3+1/3.4+....+1/99.100
B=1-1/100
B=99/100
b=[0,2,4,6,...250]
A=1+2+3+4+5+...+99+100
B=\(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+...+\frac{1}{9900}\)
A=1+2+3+4+5+...+99+100
A=(1+100).100:2=101.50=5050
B=1/2+1/6+1/12+1/20+1/30+...+1/9900
B=1/1.2+1/2.3+1/3.4+1/4.5+1/5.6+....+1/99.100
B=1-1/2+1/2-1/3+1/3-1/4+1/4-1/5+1/5-1/6+...+1/99-1/100
B=1-1/100=99/100
A = 100 x 101 : 2 = 5050
\(B=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+.........+\frac{1}{99.100}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+.....+\frac{1}{99}-\frac{1}{100}\)
\(=1-\frac{1}{100}\)
\(=\frac{99}{100}\)
Tinh:
A=1+2+3+4+5+.......+99+100
B=1/2+1/6+1/12+1/30+...........+1/9900
\(A=\left(1+100\right)\times100\div2=5050\)\(A=\left(1+100\right)\times100\div2=5050\)
\(B=\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{9900}\)
\(\Rightarrow B=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)
\(\Rightarrow B=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)
\(\Rightarrow B=1-\frac{1}{100}=\frac{99}{100}\)
Vậy..................
A=1+2+3+4+...+99+100
Số số hạng:(100-1):1+1=100(số)
A=(100+1)x100:2=5050
Học tốt!
Tính
a)B=\(\frac{1+2+2^2+2^3+...+2^{2008}}{1-2^{2009}}\)
b)A=1+2+3+4+5+...+99+100
B=\(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+...+\frac{1}{9900}\)
A=1/2+1/6+1/12+1/20+1/30......1/9900
\(A=\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+\dfrac{1}{4\cdot5}+\dfrac{1}{5\cdot6}+...+\dfrac{1}{99\cdot100}\)
\(A=\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+...+\dfrac{1}{99}-\dfrac{1}{100}\)
\(A=\dfrac{1}{1}-\dfrac{1}{100}\)
\(A=\dfrac{99}{100}\)
\(\cdot\) LÀ DẤU \(\times\)
A = \(\dfrac{1}{2}\) + \(\dfrac{1}{6}\) + \(\dfrac{1}{12}\) + \(\dfrac{1}{20}\)+ \(\dfrac{1}{30}\)+.....+ \(\dfrac{1}{9900}\)
A = \(\dfrac{1}{1\times2}+\dfrac{1}{2\times3}+\dfrac{1}{3\times4}+\dfrac{1}{4\times5}+\dfrac{1}{5\times6}+....+\dfrac{1}{99\times100}\)
A = \(\dfrac{1}{1}-\dfrac{1}{2}\) + \(\dfrac{1}{2}\) - \(\dfrac{1}{3}\) + \(\dfrac{1}{3}\) - \(\dfrac{1}{4}\) + \(\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}\)+......+ \(\dfrac{1}{99}\) - \(\dfrac{1}{100}\)
A = \(\dfrac{1}{1}\) - \(\dfrac{1}{100}\)
A = \(\dfrac{99}{100}\)