(1-1/2)x(1-1/3)x(1-1/4)x...x(1-1/2015)x(1-1/2016)
a, x+1/2013+x+1/2014+x+1/2015=x+1/2016+x+1/2017
b,x-1/2013+x-2/2014+x-3/2015=x-4/2016-2
so sánh A= 1/1 x 2 x 3 + 1/2 x 3 x 4 + 1/3 x 4 x 5 + ...+ 1/ 2014 x 2015 x 2016 với 1/4
2A=2/1.2.3 + 2/2.3.4 + 2/3.4.5 + ...+2/2014.2015.2016
Ta có: 2/1.2.3=1/1.2-1/2.3; 2/2.3.4=1/2.3-1/3.4; 2/3.4.5=1/3.4-1/4.5; ....; 2/2014.2015.2016=1/2014.2015-1/2015.2016
=> 2A=1/1.2-1/2015.2016
=> 2A < 1/2 => A < 1/4
Tính (1-1/2)x(1-1/3)x(1-1/4)x( 1-1/5)x .........( 1-1/2015)x(1-1/2016)
\(\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)..........\left(1-\frac{1}{2016}\right)\)
\(=\frac{1}{2}.\frac{2}{3}.........\frac{2015}{2016}\)
\(=\frac{1.2.......2015}{2.3.......2016}\)
\(=\frac{1}{2016}\)
\(\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)........\left(1-\frac{1}{2016}\right)\)
\(=\frac{1}{2}.\frac{2}{3}.......\frac{2015}{2016}=\frac{1}{2016}\)
(1-1/2) x (1-1/3) x (1 -1/4) x.....x (1-1/2014) x ((1-1/2015) x (1-1/2016)
tìm x biết
a:x+1/10+x+1/11+x+1/12=x+1/13+x+1/14
b:x+4/2013+x+3/2016=x+2/2015+x+1/2016
a) \(\frac{x+1}{10}+\frac{x+1}{11}+\frac{x+1}{12}=\frac{x+1}{13}+\frac{x+1}{14}\)
\(\Rightarrow\frac{x+1}{10}+\frac{x+1}{11}+\frac{x+1}{12}-\frac{x+1}{13}-\frac{x+1}{14}=0\)
\(\Rightarrow\left(x+1\right)\left(\frac{1}{10}+\frac{1}{11}+\frac{1}{12}-\frac{1}{13}-\frac{1}{14}\right)=0\)
Vì \(\frac{1}{10}+\frac{1}{11}+\frac{1}{12}-\frac{1}{13}-\frac{1}{14}\ne0\) nên x+1=0
=>x=0-1
=>x-1
a:x+1/10+x+1/11+x+1/12=x+1/13+x+1/14
<=>(x+1)(1/10 + 1/11+1/12) =(x+1)(1/13 + 1/14)
<=>(x+1)(1/10 + 1/11+1/12 -1/13 -1/14)=0
<=> x+1=0(vì biểu thức 1/10 + 1/11 +1/12-1/13-1/14#0)
<=>x= -1
b:hình như sai đề
Tính nhanh
c) C=(1 – 1/2) x ( 1 - 1/3) x (1 – 1/4) x (1 – 1/5) x (1 – 1/6) x ……….. x ( 1 - 1/2015 ) x ( 1- 1/2016)
=1/2x2/3x3/4x4/5x...x2015/2016
=1/2016
Tìm x thuộc Z biết:
1) 2016+2015+2014+...+x = 2016
2) 1+2+3+...+x = 1275
3) | x+2015 | + | x+2016| = 1
thiện xạ 5a3 có thể giải chi tiết ra đc k? Mk cần cách lm
2) 1+2+3+...+x=1275
Có SSH là: (x+1):1+1=x(SH)
=> (x+1).x:2=1275
=>(x+1).x=1275.2
=>(x+1).x=2550
=>(x+1).x=51.50
=>x=50
3) |x+2015|+|x+2016|=1
Ta thấy |x+2015| và |x+2016| > hoặc = 0 với mọi x
=> 1= 0+1=1+0
+) x+2015=0=>x=-2015
x+2016=1=>x=-2015
+) x+2015=1=>x=-2014
x+2016=0=> x=-2016
Vậy xE{...}
Giải pt
1)x+y+z+8=\(2\sqrt{x-1}\)+\(4\sqrt{y-2}\)+\(6\sqrt{z-3}\)
2)\(\sqrt{x}+\sqrt{x+1}=1\)
3)\(\left(1+\sqrt{x^2+2017+2016}\right)\)\(\left(\sqrt{2016+x}-\sqrt{x+1}\right)\)=2015
1.
ĐKXĐ: $x\geq 1; y\geq 2; z\geq 3$
PT \(\Leftrightarrow x+y+z+8-2\sqrt{x-1}-4\sqrt{y-2}-6\sqrt{z-3}=0\)
\(\Leftrightarrow [(x-1)-2\sqrt{x-1}+1]+[(y-2)-4\sqrt{y-2}+4]+[(z-3)-6\sqrt{z-3}+9]=0\)
\(\Leftrightarrow (\sqrt{x-1}-1)^2+(\sqrt{y-2}-2)^2+(\sqrt{z-3}-3)^2=0\)
\(\Rightarrow \sqrt{x-1}-1=\sqrt{y-2}-2=\sqrt{z-3}-3=0\)
\(\Leftrightarrow \left\{\begin{matrix} x=2\\ y=6\\ z=12\end{matrix}\right.\)
2.
ĐKXĐ: $x\geq 0$
PT $\Leftrightarrow \sqrt{x+1}=1-\sqrt{x}$
$\Rightarrow x+1=(1-\sqrt{x})^2=x+1-2\sqrt{x}$
$\Leftrightarrow 2\sqrt{x}=0$
$\Leftrightarrow x=0$
Thử lại thấy thỏa mãn
Vậy $x=0$
3.
ĐKXĐ: $x\geq -1$
PT \(\Leftrightarrow (1+\sqrt{x^2+4033}).\frac{(x+2016)-(x+1)}{\sqrt{x+2016}+\sqrt{x+1}}=2015\)
\(\Leftrightarrow 1+\sqrt{x^2+4033}=\sqrt{x+2016}+\sqrt{x+1}\)
\(\Leftrightarrow (1+\sqrt{x^2+4033})^2=(\sqrt{x+2016}+\sqrt{x+1})^2\)
Áp dụng BĐT Bunhiacopxky:
\(\text{VP}\leq 2(x+2016+x+1)=4x+4034\)
\(\text{VP}=x^2+4034+2\sqrt{x^2+4033}\geq x^2+4034+2\sqrt{4033}>x^2+4034+5\)
Mà: $x^2+4034+5-(4x+4034)=(x-2)^2+1> 0$
$\Rightarrow x^2+4034+5> 4x+4034$
$\Rightarrow \text{VP}> \text{VT}$
Do đó pt vô nghiệm.
(1-1/2)x(1-1/3)x(1-1/4)x.....x(1-1/2015)x(1-1/2016)
giải nhanh nhất có thể dùm mình nha
(1-1/2)x(1-1/3)x(1-1/4)x.....x(1-1/2015)x(1-1/2016)
=> 1/2 x 2/3 x 3/4 x 4/5 x 5/6 x 6/7 x 7/8 x 8/9 x......... x 2014/2015 x 2015/2016
Ta rút gọn cho tử này mẫu kia còn: 1/2016.
Đáp số : 1/2016
\(=\frac{2-1}{2}\times\frac{3-1}{3}\times\frac{4-1}{4}\times...\times\frac{2015-1}{2015}\times\frac{2016-1}{2016}\)
\(=\frac{1}{2}\times\frac{2}{3}\times\frac{3}{4}\times...\times\frac{2014}{2015}\times\frac{2015}{2016}\)
\(=\frac{1}{2016}\)
Nếu theo dạng bài toán này bạn chỉ cần lấy số 1 đầu tiên là tử số và số cuối cùng là mẫu số thôi vậy nên ta được kết quả là 1/2016
Chúc bạn học giỏi nhoa!!!!!!!