tim x \(\frac{3x+2}{5x+7}\)=\(\frac{3x-1}{5x+1}\)
tim x
\(\frac{3x+2}{5x+7}=\frac{3x-1}{5x+1}\)
\(\frac{x+1}{2x+1}=\frac{0.5x+2}{x+3}\)
tim x biet
a;\(\frac{3x+2}{5x+7}=\frac{3x-1}{5x+1}\)
b; \(\frac{x+1}{2x+1}=\frac{0,5x+2}{x+3}\)
a) Ta có: \(\frac{3x+2}{5x+7}=\frac{3x-1}{5x+1}\)
\(\Leftrightarrow\left(3x+2\right)\left(5x+1\right)=\left(5x+7\right)\left(3x-1\right)\)
\(\Leftrightarrow3x\left(5x+1\right)+2\left(5x+1\right)=5x\left(3x-1\right)+7\left(3x-1\right)\)
\(\Leftrightarrow15x^2+3x+10x+2=15x^2-5x+21x-7\)
\(\Leftrightarrow15x^2-15x^2+3x+10x+5x-21x=-7-2\)
\(\Leftrightarrow-3x=-9\)
\(\Leftrightarrow x=3\)
Vậy x = 3
b) Ta có: \(\frac{x+1}{2x+1}=\frac{0,5x+2}{x+3}\Leftrightarrow\left(x+1\right)\left(x+3\right)=\left(2x+1\right)\left(0,5x+2\right)\)
\(\Leftrightarrow x\left(x+3\right)+\left(x+3\right)=2x\left(0,5x+2\right)+\left(0,5x+2\right)\)
\(\Leftrightarrow x^2+3x+x+3=x^2+4x+0,5x+2\)
\(\Leftrightarrow x^2-x^2+3x+x-4x-0,5x=2-3\)
\(\Leftrightarrow-0,5x=-1\Leftrightarrow x=2\)
Vậy x = 2
Tìm x:
\(\frac{3x+2}{5x+7}=\frac{3x-1}{5x+1}\)
\(\frac{3x+2}{5x+7}=\frac{3x-1}{5x+1}\)
\(\Rightarrow\left(3x+2\right)\left(5x+1\right)=\left(3x-1\right)\left(5x+7\right)\)
\(\Rightarrow15x^2+10x+3x+2=15x^2-5x+21x-7\)
\(3x=9\)
\(x=3\)
Ta có: (3x+2)(5x+1)=(5x+7)(3x-1) (ĐKXĐ: x khác -7/5, x khác -1/5)
=> 15x2+13x+2=15x2+16x-7
=> 3x-9=0 =>x=3 (chọn)
Giải phương trình \(\left(\frac{7}{x^2+x-12}-\frac{1}{x^2-3x+2}-\frac{1}{x^2-5x+6}-\frac{3}{x^2+5x+4}\right)=\frac{3x}{x^2-1}\)
a) \(\frac{3x+2}{5x+7}=\frac{3x-1}{5x+1}\)
b)\(\frac{x+1}{2x+1}=\frac{0.5x+2}{x+3}\)
a ) \(\frac{3x+2}{5x+7}=\frac{3x-1}{5x+1}\)
\(\Leftrightarrow\left(3x+2\right)\left(5x+1\right)=\left(3x-1\right)\left(5x+7\right)\)
\(\Leftrightarrow3x\left(5x+1\right)+2\left(5x+1\right)=3x\left(5x+7\right)-\left(5x+7\right)\)
\(\Leftrightarrow15x^2+3x+10x+2=15x^2+21x-5x-7\)
\(\Leftrightarrow15x^2+13x+2=15x^2+16x-7\)
\(\Leftrightarrow13x+2=16x-7\)
\(\Leftrightarrow13x-16x=-7-2\)
\(\Leftrightarrow-3x=-9\)
\(\Rightarrow x=3\)
b ) tương tự
Giải phương trình :
\(\frac{1}{5x^2-x+3}+\frac{1}{5x^2+x+7}+\frac{1}{5x^2+3x+13}+\frac{1}{5x^2+5x+21}=\frac{4}{x^2+6x+5}\) với x > 0
@Nguyễn Việt Lâm em sắp ktra, anh giúp em bài này với ạ ....
Akai Haruma giúp em giải phương trình trên được ko ạ ^_^
@Nguyễn Việt Lâm anh giải bải này đc ko ạ .
Ai giúp vs !!!
\(a.\frac{3x-7}{5}=\frac{2x-1}{3}\\ b.\frac{4x-7}{12}-x=\frac{3x}{8}\\ c.\frac{x-2009}{1234}+\frac{x-2009}{5678}-\frac{x-2009}{197}=0\\ d.\frac{5x-8}{3}=\frac{1-3x}{2}\\ e.\frac{x-5}{6}-\frac{x-9}{4}=\frac{5x-3}{8}+2\\ f.\frac{x-1}{\frac{2}{5}}-3-\frac{3x-2}{\frac{5}{4}}-2=1\)
\(\frac{3x-7}{5}=\frac{2x-1}{3}\)
\(\Leftrightarrow9x-21=10x-5\)
\(\Leftrightarrow-x=16\Leftrightarrow x=-16\)
\(\frac{4x-7}{12}-x=\frac{3x}{8}\)
\(\Leftrightarrow\frac{4x-7-12x}{12}=\frac{3x}{8}\)
\(\Leftrightarrow\frac{-7-8x}{12}=\frac{3x}{8}\)
\(\Leftrightarrow-56-64x=36x\)
\(\Leftrightarrow-56=100x\Leftrightarrow x=\frac{-14}{25}\)
\(\frac{x-2009}{1234}+\frac{x-2009}{5678}-\frac{x-2009}{197}=0\)
\(\Leftrightarrow\left(x-2019\right)\left(\frac{1}{1234}+\frac{1}{5678}-\frac{1}{197}\right)=0\)
Vì \(\left(\frac{1}{1234}+\frac{1}{5678}-\frac{1}{197}\right)\ne0\)nên x - 2019 = 0
Vậy x = 2019
\(\frac{5x-8}{3}=\frac{1-3x}{2}\)
\(\Leftrightarrow10x-16=3-9x\)
\(\Leftrightarrow19x=19\Leftrightarrow x=1\)
\(\frac{x-5}{6}-\frac{x-9}{4}=\frac{5x-3}{8}+2\)
\(\Rightarrow\frac{4x-20-6x+54}{24}=\frac{5x-3+16}{8}\)
\(\Rightarrow\frac{-2x+34}{24}=\frac{5x+13}{8}\)
\(\Rightarrow-16x-272=120x+312\)
\(\Leftrightarrow-136x=584\Leftrightarrow x=\frac{-73}{17}\)
\(\frac{3x+2}{5x+7}=\frac{5x-1}{5x+1}\) tìm x
\(\frac{3x+2}{5x+7}=\frac{5x-1}{5x+1}\)
\(\Leftrightarrow\left(3x+2\right)\left(5x+1\right)=\left(5x-1\right)\left(5x+7\right)\)
\(\Leftrightarrow15x^2+3x+10x+2=25x^2+35x-5x-7\)
\(\Leftrightarrow25x^2+30x-7-15x^2-13x-2=0\)
\(\Leftrightarrow10x^2+17x-9=0\)
.............
Bài 4 Giải các bất phương trình sau :
31 , \(\frac{-3x^2-x+4}{x^2+3x+5}>0\)
32 , \(\frac{4x^2+3x-1}{x^2+5x+7}>0\)
33 , \(\frac{5x^2+3x-8}{x^2-7x+6}< 0\)
34 , \(\frac{2x-5}{x^2-6x-7}< \frac{1}{x-3}\)
35 , \(\frac{x^2-5x+6}{x^2+5x+6}\ge\frac{x+1}{x}\)