1/3x1 + 1/5x3 +.........+1/95x97+1/97x99
1/3x1 + 1/3x5 + ......+ 1/95x97 + 1/97x99
\(\frac{1}{1x3}+\frac{1}{3x5}+...+\frac{1}{95x97}+\frac{1}{97x99}\)
\(=\frac{1}{2}x\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+,,,+\frac{1}{97}-\frac{1}{99}\right)\)
\(=\frac{1}{2}x\frac{98}{99}\)
\(=\frac{49}{99}\)
Đặt A=1/3x1 + 1/3x5 + ......+ 1/95x97 + 1/97x99
\(2A=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{97}-\frac{1}{99}\)
\(2A=1-\frac{1}{99}\)
\(A=\frac{98}{99}:2\)
\(A=\frac{49}{99}\)
Tính tổng:
A=1/1+1/2+1/3+1/4+1/5+1/6
B=1x3+3x5+5x7+7x9+...+95x97+97x99
1/99x97-1/97x95-1/95x93-1/5x3-1/3x1
1/99x97-1/97x95-1/95x93-....-1/5x3-1/3x1
Đặt \(A=\frac{1}{99.97}-\frac{1}{97.95}-\frac{1}{95.93}-....-\frac{1}{5.3}-\frac{1}{3.1}\)
\(\Rightarrow A=\frac{1}{99.97}-\left(\frac{1}{1.3}+\frac{1}{3.5}+....+\frac{1}{93.95}+\frac{1}{95.97}\right)\)
\(\Rightarrow A=\frac{1}{99.97}-\frac{1}{2}\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+....+\frac{1}{95}-\frac{1}{97}\right)\)
\(\Rightarrow A=\frac{1}{99}-\frac{1}{97}-\frac{1}{2}\left(1-\frac{1}{97}\right)=\frac{1}{99}-\frac{1}{97}-\frac{1}{2}-\frac{1}{194}\)
Tính
1/99x97 - 1/97x95-1/95x93-.........-1/5x3-1/3x1
thức hiện phép tính 1/99x97-1/97x95-1/95x93-...-1/5x3-1/3x1
Gọi A=1/99x97-1/97x95-1/95x93-...-1/5x3-1/3x1
Suy ra A=-1/1x3-1/3x5-...-1/93x95-1/95x97-1/97x99
2A=-2/1x3-2/3x5-...-1/93x95-1/95x97-1/97x99
2A=-(2/1x3+2/3x5+...+1/93x95+2/95x97+1/97x99
2A=-(1/2-1/3+1/2-1/5+...+1/93-1/95+1/95-1/97+1/97-1/99)
2A=-(1/2-1/99)
2A=-97/198
A=-97/396
Thực hiện phép tính : 1/99x97 - 1/97x95 - 1/95x93 - ... - 1/5x3 - 1/3x1
Đặt A =\(\frac{1}{99x97}+\frac{1}{97x95}+...+\frac{1}{3x1}\)
2A =\(\frac{2}{99x97}+\frac{2}{97x95}+...+\frac{2}{3x1}\)
2A=\(\frac{1}{97}-\frac{1}{99}+\frac{1}{95}-\frac{1}{97}+...+\frac{1}{1}-\frac{1}{3}\)
2A=1-\(\frac{1}{99}\)=\(\frac{98}{99}\)
=> A=\(\frac{49}{99}\)
Tính A bằng cách thuận tiện nhất:
A=6/5x7+6/7x9=6/9x11+...+6/95x97+6/97x99
A=1/2+5/6+11/12+19/20+29/30+41/42+55/56
Ta có: A = \(\frac{6}{5\times7}+\frac{6}{7\times9}+\frac{6}{9\times11}+...+\frac{6}{95\times97}+\frac{6}{97\times99}\)
\(\Rightarrow A=\frac{1}{6}\left(\frac{1}{5\times7}+\frac{1}{7\times9}+\frac{1}{9\times11}+...+\frac{1}{95\times97}+\frac{1}{97\times99}\right)\)
\(\Rightarrow A=\frac{1}{6}\left(\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}+...+\frac{1}{95}-\frac{1}{97}+\frac{1}{97}-\frac{1}{99}\right)\)
\(\Rightarrow A=\frac{1}{6}\left(\frac{1}{5}-\frac{1}{99}\right)\)
=> A = ...
\(\frac{1}{2}+\frac{5}{6}+\frac{11}{12}+\frac{19}{20}+...+\frac{89}{90}\)
\(=1-\frac{1}{2}+1-\frac{1}{6}+1-\frac{1}{12}+1-\frac{1}{20}+...+1-\frac{1}{90}\)
\(=9-\left(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{90}\right)\)
\(=9-\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{9.10}\right)\)
\(=9-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{9}-\frac{1}{10}\right)\)
\(=9-\left(1-\frac{1}{10}\right)\)
\(=9-\frac{9}{10}=\frac{81}{10}\)
tính tổng: 2/11x13 + 2/13x15 + 2/15x17 +...+ 2/95x97 + 2/97x99
2/11x13+2/13x15+2/15x17+...+2/97x99
=1/11-1/13+1/13-1/15+1/15-1/17+...+1/97-1/99
=1/11-1/99
=8/99
= 2/11.13 + 2/13.15 + ... + 2/97.99
= 2/11 .2/13 + 2/13 . 2/15 + ... + 2/97 . 2/97
= 2/11 + 2/97
= ......tu tinh