Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Kudo Shinichi
Xem chi tiết
Danhkhoa
Xem chi tiết
Nguyễn Thái Sơn
Xem chi tiết
Ngô Phương Linh
Xem chi tiết
Huy Anh Lê
Xem chi tiết

ai giúp mình với rồi mình tink cho nha cảm ơn các bạn nhiều 

Khách vãng lai đã xóa
๖Fly༉Donutღღ
Xem chi tiết
Thanh Tùng DZ
31 tháng 5 2017 lúc 8:25

a) Để chứng minh rằng A < 100, ta chia A thành 100 nhóm :

A = \(1+\left(\frac{1}{2}+\frac{1}{3}\right)+\left(\frac{1}{2^2}+...+\frac{1}{7}\right)+\left(\frac{1}{2^3}+...+\frac{1}{15}\right)+...+\left(\frac{1}{2^{99}}+...+\frac{1}{2^{100}}-1\right)\)

Thay các phân số trong mỗi dấu ngoặc bằng phân số lớn nhất trong dấu ngoặc đó, ta được :

A < \(1+\frac{1}{2}.2+\frac{1}{4}.4+\frac{1}{8}.8+...+\frac{1}{2^{99}}.2^{99}=100\)

b) Để chứng minh rằng A > 50, ta thêm và bớt \(\frac{1}{2^{100}}\)rồi viết A dưới dạng sau :

A = \(1+\frac{1}{2}+\left(\frac{1}{3}+\frac{1}{2^2}\right)+\left(\frac{1}{5}+...+\frac{1}{2^3}\right)+\left(\frac{1}{9}+...+\frac{1}{2^4}\right)+...+\left(\frac{1}{2^{99}+1}+...+\frac{1}{2^{100}}\right)-\frac{1}{2^{100}}\)

Thay các phân số trong mỗi dấu ngoặc bằng phân số nhỏ nhất trong dấu ngoặc đó, ta được :

A > \(1+\frac{1}{2}+\frac{1}{2^2}.2+\frac{1}{2^3}.2^2+...+\frac{1}{2^{100}}.2^{99}-\frac{1}{2^{100}}=1+\frac{1}{2}.100-\frac{1}{2^{100}}>50\)

Vũ Dương
31 tháng 5 2017 lúc 9:36

bn là râu trắng à

Nguyễn Chí Anh
Xem chi tiết
kisibongdem
11 tháng 3 2022 lúc 17:07

\(A = \dfrac{1}{2^2} + \dfrac{1}{4^2} +\dfrac{1}{6^2} +...... +\dfrac{1}{100^2} \)

\(A = \dfrac{1}{1^2.2^2} +\dfrac{1}{2^2.2^2} +\dfrac{1}{2^2.3^2} + .......+\dfrac{1}{2^2.2^{50}}\)

\(A = \dfrac{1}{2^2}.(\) \( \dfrac{1}{1^2} + \dfrac{1}{2^2} +\dfrac{1}{3^2} +...... +\dfrac{1}{50^2}) \)

\(A < \dfrac{1}{2^2}.( \dfrac{1}{1.2}+\dfrac{1}{2.3}+......+\dfrac{1}{49.50}\) \()\)

\(= \dfrac{1}{2^2}.(1-\dfrac{1}{2} + \dfrac{1}{2}-\dfrac{1}{3}+.......+\dfrac{1}{49}-\dfrac{1}{50})\)

\(= \dfrac{1}{2^2} . ( 1 - \dfrac{1}{50})\)

\(< \dfrac{1}{2^2} . 2 = \dfrac{1}{2}\)

what
Xem chi tiết
Duc Hay
4 tháng 3 2018 lúc 20:44

no thanks

do thanh dat
Xem chi tiết