Cho \(\sqrt{1+x}+\sqrt{1+y}=2\sqrt{1+a}\)
CMR:\(x+y\ge2a\)
\(Cho\sqrt{1+x}+\sqrt{1+y}=2\sqrt{1+a}\)
\(CMR:x+y\ge2a\)
\(\left(2\sqrt{1+a}\right)^2=4\left(1+a\right)=\left(\sqrt{1+x}+\sqrt{1+y}\right)^2\le2\left(x+y+2\right)\)
\(\Leftrightarrow\)\(x+y\ge2a\)
Áp dụng bđt Bunyakovsky: \(\left(\sqrt{1+x}+\sqrt{1+y}\right)^2\le2\left(x+y+2\right)\)
\(\Rightarrow4\left(a+1\right)\le2\left(x+y+2\right)\Leftrightarrow4a\le2\left(x+y\right)\Leftrightarrow x+y\ge2a\)
Cho \(\sqrt{1+x}\)+\(\sqrt{1+y}=\)\(2\sqrt{1+a}\). Chứng minh x+y\(\ge2a\)
BĐT C-S:
\(\left(2\sqrt{a+1}\right)^2=\left(\sqrt{x+1}+\sqrt{y+1}\right)^2\)
\(\le\left(1+1\right)\left(x+1+y+1\right)=2\left(x+y+2\right)\)
Hay \(4\left(a+1\right)\le2\left(x+y+2\right)\)
\(\Leftrightarrow2a+2\le x+y+2\Leftrightarrow2a\le x+y\) *DDungs*
1. \(3x^2+21x+18+2\sqrt{x^2+7x+7}=2\)
2. \(x^4+2x^3+x^2-2+2\sqrt{x^2+2x+2}=0\)
3. Cho các số dương a,b,c CMR
\(\frac{7}{a}+\frac{5}{b}+\frac{4}{c}\ge4\left(\frac{4}{a+b}+\frac{1}{b+c}+\frac{3}{c+a}\right)\)
4. Cho \(\sqrt{1+x}+\sqrt{1+y}=2\sqrt{1+a}\)CMR \(x+y\ge2a\)
1/ Cho \(\sqrt{1+x}+\sqrt{1+y}=2\sqrt{1+a}\)
Chung minh \(x+y\ge2a\)
2/Giai phuong trinh: \(x^8-2x^4+x^2-2x+2=0\)
a) CMR: \(\frac{1}{\sqrt{a+3}+\sqrt{a+2}}+\frac{1}{\sqrt{a+2}+\sqrt{a+1}}+\frac{1}{\sqrt{a+1}+\sqrt{a}}=\frac{3}{\sqrt{a+3}+\sqrt{a}}\)
b) Cho các số thực dương x, y, z thỏa mãn x+y+z=1. CMR: \(\frac{x}{x+yz}+\frac{y}{y+xz}+\frac{z}{z+xy}\le\frac{9}{4}\)
a/ Nhân cả tử và mẫu của từng phân số với liên hợp của nó và rút gọn:
\(VT=\sqrt{a+3}-\sqrt{a+2}+\sqrt{a+2}-\sqrt{a+1}+\sqrt{a+1}-\sqrt{a}\)
\(=\sqrt{a+3}-\sqrt{a}=\frac{3}{\sqrt{a+3}+\sqrt{a}}\)
b/ \(VT=\frac{x}{x\left(x+y+z\right)+yz}+\frac{y}{y\left(x+y+z\right)+zx}+\frac{z}{z\left(x+y+z\right)+xy}\)
\(=\frac{x}{\left(x+y\right)\left(x+z\right)}+\frac{y}{\left(x+y\right)\left(y+z\right)}+\frac{z}{\left(x+z\right)\left(y+z\right)}\)
\(=\frac{x\left(y+z\right)+y\left(x+z\right)+z\left(x+y\right)}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}=\frac{2\left(xy+yz+zx\right)}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}\) (1)
Mặt khác ta có: \(\left(x+y\right)\left(y+z\right)\left(z+x\right)\ge\frac{8}{9}\left(x+y+z\right)\left(xy+yz+zx\right)\)
Thật vậy, \(\left(x+y+z\right)\left(xy+yz+zx\right)=\left(x+y\right)\left(y+z\right)\left(z+x\right)+xyz\)
Mà \(xyz\le\frac{1}{9}\left(x+y+z\right)\left(xy+yz+zx\right)\) (theo AM-GM)
\(\Rightarrow\frac{8}{9}\left(x+y+z\right)\left(xy+yz+zx\right)\le\left(x+y\right)\left(y+z\right)\left(z+x\right)\) (đpcm)
Thay vào (1) \(\Rightarrow VT\le\frac{2\left(xy+yz+zx\right)}{\frac{8}{9}\left(x+y+z\right)\left(xy+yz+zx\right)}=\frac{9}{4}\)
Dấu "=" xảy ra khi \(x=y=z=\frac{1}{3}\)
Cho 2 số thực a, b thỏa mãn xy + \(\sqrt{\left(x^2+1\right)\left(y^2+1\right)}=1\)
CMR: \(x\sqrt{1+y^2}+y\sqrt{1+x^2}=0\)
Cho 3 số dương x,y,z. CMR:\(\dfrac{1}{\sqrt{x}}+\dfrac{1}{\sqrt{y}}+\dfrac{1}{\sqrt{z}}>=3\left(\dfrac{1}{\sqrt{x}+2\sqrt{y}}+\dfrac{1}{\sqrt{y}+2\sqrt{z}}+\dfrac{1}{\sqrt{z}+2\sqrt{x}}\right)\)
Áp dụng BĐT Cauchy-Schwarz ta có:
\(\dfrac{1}{\sqrt{x}+2\sqrt{y}}\le\dfrac{1}{9}\left(\dfrac{1}{\sqrt{x}}+\dfrac{1}{\sqrt{y}}+\dfrac{1}{\sqrt{y}}\right)\)
Tương tự cho 2 BĐT trên ta có:
\(\dfrac{1}{3}VP\le\dfrac{1}{9}\cdot3\left(\dfrac{1}{\sqrt{x}}+\dfrac{1}{\sqrt{y}}+\dfrac{1}{\sqrt{z}}\right)\)
\(=\dfrac{1}{3}\left(\dfrac{1}{\sqrt{x}}+\dfrac{1}{\sqrt{y}}+\dfrac{1}{\sqrt{z}}\right)=\dfrac{1}{3}VT\)
Xảy ra khi \(x=y=z\)
Cho \(\sqrt{b+1}+\sqrt{c+1}=2\sqrt{a+1}\)
CMR \(b+c\ge2a\)
Cho x,y,z>0 và x+y+z=1.CMR:\(\sqrt{x^2+\dfrac{1}{y^2}}+\sqrt{y^2+\dfrac{1}{z^2}}\sqrt{z^2+\dfrac{1}{x^2}}>=\sqrt{82}\)