Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Tiểu Qủy
Xem chi tiết
Nguyễn Minh Đăng
7 tháng 8 2020 lúc 9:36

Bài làm:

Ta có: \(\frac{a^2+b^2}{a+b}+\frac{b^2+c^2}{b+c}+\frac{c^2+a^2}{c+a}\)

\(=\frac{a^2}{a+b}+\frac{b^2}{a+b}+\frac{b^2}{b+c}+\frac{c^2}{b+c}+\frac{c^2}{c+a}+\frac{a^2}{c+a}\)

\(=\left(\frac{a^2}{a+b}+\frac{b^2}{b+c}+\frac{c^2}{c+a}\right)+\left(\frac{a^2}{c+a}+\frac{b^2}{a+b}+\frac{c^2}{b+c}\right)\)

\(\ge\frac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}+\frac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}\)(Cauchy Schwars)

\(=\frac{\left(a+b+c\right)^2}{a+b+c}\ge\frac{3\left(ab+bc+ca\right)}{a+b+c}\)

Dấu "=" xảy ra khi: \(a=b=c\)

Khách vãng lai đã xóa
Trí Tiên亗
7 tháng 8 2020 lúc 9:37

Áp dụng bất đẳng thức Bunhiacopxki ta được 

\(\frac{a^2+b^2}{a+b}+\frac{b^2+c^2}{b+c}+\frac{c^2+a^2}{c+a}\ge\frac{\left(a+b\right)^2}{2\left(a+b\right)}+\frac{\left(b+c\right)^2}{2\left(b+c\right)}+\frac{\left(c+a\right)^2}{2\left(c+a\right)}\)

                                                        \(\ge\frac{\left(2a+2b+2c\right)^2}{4\left(a+b+c\right)}\ge\frac{12\left(ab+bc+ca\right)}{4\left(a+b+c\right)}=\frac{3\left(ab+bc+ca\right)}{a+b+c}\)( rút gọn 12/4)

   Bất đẳng thức được chứng minh 

Đẳng thức xảy ra khi và chỉ khi \(a=b=c\)

Khách vãng lai đã xóa
Trí Tiên亗
7 tháng 8 2020 lúc 9:45

làm nốt cách nx 

Áp dụng bất đẳng thức Bunhiacopxki ta được

\(\frac{a^2}{a+b}+\frac{b^2}{b+c}+\frac{c^2}{c+a}\ge\frac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}\ge\frac{3\left(ab+bc+ca\right)}{2\left(a+b+c\right)}\)

\(\frac{b^2}{a+b}+\frac{c^2}{b+c}+\frac{a^2}{c+a}\ge\frac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}\ge\frac{3\left(ab+bc+ca\right)}{2\left(a+b+c\right)}\)

Cộng vế theo vế hai bất đẳng thức trên ta được 

\(\frac{a^2+b^2}{a+b}+\frac{b^2+c^2}{b+c}+\frac{c^2+a^2}{c+a}\ge\frac{3\left(ab+bc+ca\right)}{a+b+c}\left(đpcm\right)\)

Đẳng thức xảy ra khi và chỉ khi \(a=b=c\)

Khách vãng lai đã xóa
Nguyễn Đức Nghĩa
Xem chi tiết
Nguyễn Đăng Nhân
24 tháng 2 2022 lúc 17:41

Ta có:

\(\left(a+b+c\right)^3=a^3+b^3+c^3+3\left(a+b\right)\left(b+c\right)\left(c+a\right)\)

Dễ dàng chứng minh được:

\(\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge8abc\)

\(\Rightarrow\left(a+b+c\right)^3\ge a^3+b^3+c^3+24abc\)

Khi đó ta được bất đẳng thức:

\(\frac{\left(a+b+c\right)^3}{abc}+\frac{ab+bc+ca}{a^2+b^2+c^2}\ge\frac{a^3+b^3+c^3+24abc}{abc}+\frac{ab+bc+ca}{a^2+b^2+c^2}\)

Vậy ta cần chứng minh:

\(\frac{a^3+b^3+c^3+24abc}{abc}+\frac{ab+bc+ca}{a^2+b^2+c^2}\ge28\)

\(\Leftrightarrow\frac{a^2}{bc}+\frac{b^2}{ca}+\frac{c^2}{ab}+\frac{ab+bc+ca}{a^2+b^2+c^2}\ge4\)

Theo bất đẳng thức Bunhiacopxki dạng phân thức ta được:

\(\frac{a^2}{bc}+\frac{b^2}{ca}+\frac{c^2}{ab}\ge\frac{\left(a+b+c\right)^2}{ab+bc+ca}=\frac{a^2+b^2+c^2}{ab+bc+ca}+2\)

Để hoàn thành chứng minh ta cần chỉ ra được:

\(\frac{a^2+b^2+c^2}{ab+bc+ca}+2+\frac{ab+bc+ca}{a^2+b^2+c^2}\ge4\)

\(\Leftrightarrow\frac{a^2+b^2+c^2}{ab+bc+ca}+\frac{ab+bc+ca}{a^2+b^2+c^2}\ge2\)

Theo bất đẳng thức Cauchy thì bất đẳng thức cuối cùng hiển nhiên đúng.

Như vậy bất đẳng thức được chứng minh. Dấu đẳng thức xẩy ra tại \(a=b=c\)

Khách vãng lai đã xóa
Trần Lê Nguyên Mạnh
Xem chi tiết
Kiệt Nguyễn
23 tháng 8 2020 lúc 21:14

Áp dụng bất đẳng thức Bunyakovsky ta được:          \(\left(ab+bc+ca+1\right)\left(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}+1\right)\ge\left(a+b+c+1\right)^2\)\(\left(ab+bc+ca+1\right)\left(\frac{b}{a}+\frac{c}{b}+\frac{a}{c}+1\right)\ge\left(b+c+a+1\right)^2\)

Cộng theo vế hai bất đẳng thức này ta được \(\left(ab+bc+ca+1\right)\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}\ge2\left(a+b+c+1\right)^2\)hay \(\frac{ab+bc+ca+1}{\left(a+b+c+1\right)^2}\ge\frac{2abc}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)

Đến đây, ta quy bất đẳng thức cần chứng minh về dạng:\(\frac{2abc}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}+\frac{3}{8}\sqrt[3]{\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}}\ge1\)

Áp dụng bất đẳng thức Cauchy ta được \(\frac{2abc}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}+\frac{1}{8}\sqrt[3]{\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}}\)\(\ge2\sqrt{\frac{2abc}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}.\frac{1}{8}\sqrt[3]{\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}}}\)\(=\sqrt{\sqrt[3]{\frac{a^2b^2c^2}{\left(a+b\right)^2\left(b+c\right)^2\left(c+a\right)^2}}}=\sqrt[3]{\frac{abc}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}}\)(*)

Cũng theo bất đẳng thức Cauchy ta được \(\sqrt[3]{\frac{abc}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}}+\frac{1}{4}\sqrt[3]{\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}}\ge2\sqrt{\frac{1}{4}}=1\)(**)

Từ (*) và (**) suy ra được \(\frac{2abc}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}+\frac{3}{8}\sqrt[3]{\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}}\ge1\)

Vậy bất đẳng thức được chứng minh

Đẳng thức xảy ra a = b = c = 1

Khách vãng lai đã xóa
Bùi Hữu Vinh
Xem chi tiết
Đặng Ngọc Quỳnh
26 tháng 2 2021 lúc 6:00

Theo bđt Cauchy - Schwart ta có:

\(\text{Σ}cyc\frac{c}{a^2\left(bc+1\right)}=\text{Σ}cyc\frac{\frac{1}{a^2}}{b+\frac{1}{c}}\ge\frac{\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2}{\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+a+b+c}\)\(=\frac{\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2}{\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+3}\)

\(=\frac{\left(ab+bc+ca\right)^2}{abc\left(ab+bc+ca\right)+3a^2b^2c^2}\)

Đặt \(ab+bc+ca=x;abc=y\).

Ta có: \(\frac{x^2}{xy+3y^2}\ge\frac{9}{x\left(1+y\right)}\Leftrightarrow x^3+x^3y\ge9xy+27y^2\)

\(\Leftrightarrow x\left(x^2-9y\right)+y\left(x^3-27y\right)\ge0\) ( luôn đúng )

Vậy BĐT đc CM. Dấu '=' xảy ra <=> a=b=c=1

Khách vãng lai đã xóa
Bùi Hữu Vinh
26 tháng 2 2021 lúc 22:54

sai rồi nhé bạn 

Khách vãng lai đã xóa
Bùi Hữu Vinh
26 tháng 2 2021 lúc 23:05

làm sao mà \(x\left(x^2-9y\right)+y\left(x^3-27y\right)\ge0\)lại luôn đúng

Khách vãng lai đã xóa
Kiệt Nguyễn
Xem chi tiết
l҉o҉n҉g҉ d҉z҉
Xem chi tiết
Inequalities
28 tháng 12 2020 lúc 20:32

Đề sai. Nếu chỗ căn vế phải mà là căn bậc 3 thì t sol cho

Khách vãng lai đã xóa
Giao Khánh Linh
Xem chi tiết
Tiến Nguyễn Minh
Xem chi tiết
Vũ Tiến Manh
21 tháng 10 2019 lúc 22:19

1) Áp dụng bunhiacopxki ta được \(\sqrt{\left(2a^2+b^2\right)\left(2a^2+c^2\right)}\ge\sqrt{\left(2a^2+bc\right)^2}=2a^2+bc\), tương tự với các mẫu ta được vế trái \(\le\frac{a^2}{2a^2+bc}+\frac{b^2}{2b^2+ac}+\frac{c^2}{2c^2+ab}\le1< =>\)\(1-\frac{bc}{2a^2+bc}+1-\frac{ac}{2b^2+ac}+1-\frac{ab}{2c^2+ab}\le2< =>\)

\(\frac{bc}{2a^2+bc}+\frac{ac}{2b^2+ac}+\frac{ab}{2c^2+ab}\ge1\)<=> \(\frac{b^2c^2}{2a^2bc+b^2c^2}+\frac{a^2c^2}{2b^2ac+a^2c^2}+\frac{a^2b^2}{2c^2ab+a^2b^2}\ge1\)  (1) 

áp dụng (x2 +y2 +z2)(m2+n2+p2\(\ge\left(xm+yn+zp\right)^2\)

(2a2bc +b2c2 + 2b2ac+a2c2 + 2c2ab+a2b2). VT\(\ge\left(bc+ca+ab\right)^2\)   <=> (ab+bc+ca)2. VT \(\ge\left(ab+bc+ca\right)^2< =>VT\ge1\)  ( vậy (1) đúng)

dấu '=' khi a=b=c

Khách vãng lai đã xóa
HD Film
21 tháng 10 2019 lúc 22:26

4b, \(\frac{a^3}{a^2+b^2}+\frac{b^3}{b^2+c^2}+\frac{c^3}{c^2+a^2}=1-\frac{ab^2}{a^2+b^2}+1-\frac{bc^2}{b^2+c^2}+1-\frac{ca^2}{a^2+c^2}\)

\(\ge3-\frac{ab^2}{2ab}-\frac{bc^2}{2bc}-\frac{ca^2}{2ac}=3-\frac{\left(a+b+c\right)}{2}=\frac{3}{2}\)

Khách vãng lai đã xóa
HD Film
21 tháng 10 2019 lúc 22:35

4c, 

\(\frac{a+1}{b^2+1}+\frac{b+1}{c^2+1}+\frac{c+1}{a^2+1}=a+b+c-\frac{b^2}{b^2+1}-\frac{c^2}{c^2+1}-\frac{a^2}{a^2+1}+3--\frac{b^2}{b^2+1}-\frac{c^2}{c^2+1}-\frac{a^2}{a^2+1}\)\(\ge6-2\cdot\frac{\left(a+b+c\right)}{2}=3\)

Khách vãng lai đã xóa
Hà Lê
Xem chi tiết
Thắng Nguyễn
9 tháng 7 2017 lúc 17:24

Lần sau đăng ít 1 thôi đăng nhiều ngại làm, bn đăng nhiều nên tui hướng dẫn sơ qua thôi tự làm đầy đủ vào vở

Bài 1:

Áp dụng BĐT AM-GM ta có:

\(a^4+b^4\ge2a^2b^2;b^4+c^4\ge2b^2c^2;c^4+a^4\ge2c^2a^2\)

Cộng theo vế 3 BĐT trên rồi thu gọn

\(a^4+b^4+c^4\ge a^2b^2+b^2c^2+c^2a^2\)

Áp dụng tiếp BĐT AM-GM

\(a^2b^2+b^2c^2=b^2\left(a^2+c^2\right)\ge2b^2ac\)

Tương tự rồi cộng theo vế có ĐPCM

Bài 2:

Quy đồng  BĐT trên ta có:

\(\frac{a^2}{b^2}+\frac{b^2}{a^2}-\frac{a}{b}-\frac{b}{a}\ge0\)

\(\Leftrightarrow\frac{\left(a-b\right)^2\left(a^2+ab+b^2\right)}{a^2b^2}\ge0\) (luôn đúng)

Bài 4: Áp dụng BĐT AM-GM 

\(a^3+b^3=\left(a+b\right)\left(a^2-ab+b^2\right)\)

\(\ge\left(a+b\right)\left(2ab-ab\right)=ab\left(a+b\right)\)

\(\Rightarrow\frac{a^3+b^3}{ab}\ge\frac{ab\left(a+b\right)}{ab}=a+b\)

Tương tự rồi cộng theo vế

Bài 5: sai đề tự nhien có dấu - :v nghĩ là +

Game Master VN
9 tháng 7 2017 lúc 9:54

ai k mình k lại [ chỉ 3 người đầu tiên mà trên 10 điểm hỏi đáp ]