CMR:Không có 3 số x,y,z nguyên nào thỏa mãn: x^4+y^4=7z^4+5
CMR:Không có 3 số x,y,z nguyên nào thỏa mãn: x^2+y^2+z^2=xyz-1
tìm 3 số nguyên x,y,z thỏa mãn: 3^x+4^y=5^z
tham khảo
1...Chia cả hai vế cho xyz ta được
3xy/xyz + 3yz/xyz + 3zx/xyz = 4xyz/xyz
<=>3/x + 3/y + 3/z = 4
<=>1/x + 1/y + 1/z = 4/3
Vì x,y,z bình đẳng nên giả sử 0<x<=y<=z
+nếu x>=4=> y>=4;z>=4
=> 1/x + 1/y + 1/z <= 1/4 + 1/4 + 1/4 =3/4 < 4/3 => pt vô nghiệm
+nếu x=1 => 1+1/y+1/z=4/3
<=> 1/y+1/z=1/3
<=> 3(y+z)=yz
<=> 3y+3z-yz=0
<=> 3y-yz+3z-9=-9
<=> y(3-z)-3(3-z)=-9
<=> (3-z)(3-y)=9
Vì y,z nguyên dương nên (3-y),(3-z) nguyên dương
mà 9=3*3=1*9=9*1
==>3-z=3 và 3-y=3 => z=0 và y=0 (loại vì y,z nguyên dương)
+nếu x=2 => 1/2+1/y+1/z=4/3
<=> 1/y+1/z=5/6
<=> 6(y+z)=5yz
<=> 6y+6z-5yz=0
<=> 30y-25yz+30z-36=-36
<=> 5y(6-5z)-6(6-5z)=-36
<=> (5z-6)(5y-6)=36
Vì y,z nguyên dương nên (5y-6),(5z-6) nguyên dương
mà 36=6*6=2*18=18*2=3*12=12*3=4*9=9*4
Giải tương tự phần trên ta được
y=2,z=3 hoặc y=3,z=2
+nếu x=3 => 1/3+1/y+1/z=4/3
<=> 1/y+1/z=1
Giải tương tự phần trên ta được y=z=2
Vậy (x;y;z)=(2;2;3);(2;3;2);(3;2;2)
Tham Khảo
3xy/xyz + 3yz/xyz + 3zx/xyz = 4xyz/xyz
<=>3/x + 3/y + 3/z = 4
<=>1/x + 1/y + 1/z = 4/3
Vì x,y,z bình đẳng nên giả sử 0<x<=y<=z
+nếu x>=4=> y>=4;z>=4
=> 1/x + 1/y + 1/z <= 1/4 + 1/4 + 1/4 =3/4 < 4/3 => pt vô nghiệm
+nếu x=1 => 1+1/y+1/z=4/3
<=> 1/y+1/z=1/3
<=> 3(y+z)=yz
<=> 3y+3z-yz=0
<=> 3y-yz+3z-9=-9
<=> y(3-z)-3(3-z)=-9
<=> (3-z)(3-y)=9
Vì y,z nguyên dương nên (3-y),(3-z) nguyên dương
mà 9=3*3=1*9=9*1
==>3-z=3 và 3-y=3 => z=0 và y=0 (loại vì y,z nguyên dương)
+nếu x=2 => 1/2+1/y+1/z=4/3
<=> 1/y+1/z=5/6
<=> 6(y+z)=5yz
<=> 6y+6z-5yz=0
<=> 30y-25yz+30z-36=-36
<=> 5y(6-5z)-6(6-5z)=-36
<=> (5z-6)(5y-6)=36
Vì y,z nguyên dương nên (5y-6),(5z-6) nguyên dương
mà 36=6*6=2*18=18*2=3*12=12*3=4*9=9*4
Giải tương tự phần trên ta được
y=2,z=3 hoặc y=3,z=2
+nếu x=3 => 1/3+1/y+1/z=4/3
<=> 1/y+1/z=1
Giải tương tự phần trên ta được y=z=2
Vậy (x;y;z)=(2;2;3);(2;3;2);(3;2;2)
tham khảo
1...Chia cả hai vế cho xyz ta được
3xy/xyz + 3yz/xyz + 3zx/xyz = 4xyz/xyz
<=>3/x + 3/y + 3/z = 4
<=>1/x + 1/y + 1/z = 4/3
Vì x,y,z bình đẳng nên giả sử 0<x<=y<=z
+nếu x>=4=> y>=4;z>=4
=> 1/x + 1/y + 1/z <= 1/4 + 1/4 + 1/4 =3/4 < 4/3 => pt vô nghiệm
+nếu x=1 => 1+1/y+1/z=4/3
<=> 1/y+1/z=1/3
<=> 3(y+z)=yz
<=> 3y+3z-yz=0
<=> 3y-yz+3z-9=-9
<=> y(3-z)-3(3-z)=-9
<=> (3-z)(3-y)=9
Vì y,z nguyên dương nên (3-y),(3-z) nguyên dương
mà 9=3*3=1*9=9*1
==>3-z=3 và 3-y=3 => z=0 và y=0 (loại vì y,z nguyên dương)
+nếu x=2 => 1/2+1/y+1/z=4/3
<=> 1/y+1/z=5/6
<=> 6(y+z)=5yz
<=> 6y+6z-5yz=0
<=> 30y-25yz+30z-36=-36
<=> 5y(6-5z)-6(6-5z)=-36
<=> (5z-6)(5y-6)=36
Vì y,z nguyên dương nên (5y-6),(5z-6) nguyên dương
mà 36=6*6=2*18=18*2=3*12=12*3=4*9=9*4
Giải tương tự phần trên ta được
y=2,z=3 hoặc y=3,z=2
+nếu x=3 => 1/3+1/y+1/z=4/3
<=> 1/y+1/z=1
Giải tương tự phần trên ta được y=z=2
Vậy (x;y;z)=(2;2;3);(2;3;2);(3;2;2)
tìm x,y,z là các số dương thỏa mãn:
a/x^2+y^2+z^2=2015
b/x^2+y^2=7z^2+5
c/4x^2+4x+2z^2=8y^3+4
giúp mk vs, mai m phải nộp rồi
bn nào giải bài nào cũng đc, mk sẽ tick hết vì mk có nhiều nick
tìm x,y,z là các số dương thỏa mãn:
a/x^2+y^2+z^2=2015
b/x^2+y^2=7z^2+5
c/4x^2+4x+2z^2=8y^3+4
giúp mk vs, mai m phải nộp rồi
bn nào giải bài nào cũng đc, mk sẽ tick hết vì mk có nhiều nick
Tìm x, y, z nguyên thỏa mãn x+y+z+4=\(2\sqrt{x-2}+4\sqrt{y-3}+6\sqrt{z-5}\)
Bạn trừ đi rồi gộp thành hằng đẳng thức là được nhé
tìm x,y,z là các số dương thỏa mãn:
a/x^2+y^2+z^2=2015
b/x^2+y^2=7z^2+5
c/4x^2+4x+2z^2=8y^3+4
giúp mk vs, mai m phải nộp rồi
bn nào giải bài nào cũng đc, mk sẽ tick hết vì mk có nhiều nick
Help me!!!!!!!!!!!!1
1)cho 3 số x, y,z thỏa mãn điều kiện x+y+z=2018 và x^3+y^3+z^3=2018^3. Cmr (x+y+z)^3=x^2017+y^2017+z^2017
2)
tìm các cặp số nguyên (x y) biết x^2-4xy+5y^2-16=0
3)Cho 3 số a,b,c thỏa mãn a+b+c=0 và a^2+b^2+c^2=2018
4)tính giả trị biểu thức A=a^4+b^4+c^4
Tìm các số nguyên dương x,y,z thỏa mãn x^2 + y^3 + z^4 = 90
Vì x, y, z là các số nguyên dương nên x,y,z \(\ge1\)
Ta có
\(x^2+y^3+z^4=90\)
\(\Rightarrow z^4< 90\)
Ta thấy rằng \(\hept{\begin{cases}4^4=256>90\\3^4=81< 90\end{cases}}\)nên z không thể lớn hơn 4 được
Hay z nhận các giá trị là 1, 2, 3
Với z = 3 thì
\(x^2+y^3=90-3^4=9\)
Tương tự như trên ta cũng thấy được: y chỉ thể nhận các giá trị 1,2
Thế vô lần lược tìm được: y = 2, x = 1
Xét lần lược các trường hợp của z sẽ tìm được các nghiêm còn lại
Các bộ số cần tìm là: \(\left(x,y,z\right)=\left(1,2,3\right);\left(5,4,1\right);\left(9,2,1\right)\)
Mình chỉ hướng dẫn bạn cách làm thôi nhé.
Vì x,y,z là các số nguyên dg nên x,y,z >/1
Ta có : x2 +y3 +z4 = 90
Suy ra z4 < 90
Ta thấy rằng {42 = 256 > 90 , 34 = 81 < 90 nên z ko thể >4
Hay z nhận các gt là 1,2,3
Với z=3 thì :
x2
Tìm các số nguyên dương x,y,z thỏa mãn x^2+y^3+z^4=90.