Tìm số nguyên x, y để:
x3 + y3 = 2022
Giải pt nghiệm nguyên:
1. x2+y2=(x-y)(xy+2)+9
2. xy=p(x+y) với p là số nguyên tố
3. x3+y3=2022
\(pt< =>\left(x-y\right)^2+xy=\left(x-y\right)\left(xy+2\right)+9\)
\(< =>\left(y-x\right)\left(xy+2+y-x\right)+xy+2+y-x-\left(y-x\right)=11\)
\(< =>\left(y-x+1\right)\left(xy+2+y-x\right)-\left(y-x+1\right)=10\)
\(< =>\left(x-y+1\right)\left(x-y-1-xy\right)=10\)
đến đây giải hơi bị khổ =))
Giải pt nghiệm nguyên:
a)x2+y2=(x-y)(xy+2)+9
b)xy=p(x+y) với p là số nguyên tố
c) x3+y3=2022
Giải pt nghiệm nguyên:
a)x2+y2=(x-y)(xy+2)+9
b)xy=p(x+y) với p là số nguyên tố
c) x3+y3=2022
tìm số nguyên x y thỏa mãn (x+3)^2022+(y-2)^2022=0
tìm số nguyên x y thỏa mãn (x+3)^2022+(y-2)^2022=0
Tìm các cặp số nguyên x,y thỏa mãn:
a)4x2+4x=y3+y2+y
b)x4+2x2=y3
Tìm các số nguyên x và y , biết : - 2 x = y 3 và x < 0 < y
Ta có x.y = -2.3 = -6. Vì x < 0 < y nên ta có bảng sau:
X | -6 | -1 | -3 | -2 |
Y | 1 | 6 | 2 | 3 |
Tìm các số nguyên x, y thỏa mãn
x3 - 3xy2 + y3 = 2020
Tìm x; y là số nguyên để : x3 -y3=xy+6