1020<x<1030
[(1+2019/1)+(1+2019/2)+...+(1+2019/1020)]:[(1+1020/1)(1+1020/2)+....+(1+1020/2019)]
Mik sắp nộp r ai nhanh mik tick liền lun miễn là bài làm tốt 👍
1020+X.1/3=4/5+1020
\(1020+Xx\frac{1}{3}=\frac{4}{5}+1020\)
\(=1020+Xx\frac{1}{3}=\frac{5104}{5}\)
\(=Xx\frac{1}{3}=\frac{5104}{5}-1020\)
\(=Xx\frac{1}{3}=\frac{4}{5}\)
\(=\frac{4}{5}:\frac{1}{3}\)
\(=\frac{12}{5}\)
\(1020+x.\frac{1}{3}=\frac{4}{5}+1020\)
\(1020+x.\frac{1}{3}=\frac{5104}{5}\)
\(x.\frac{1}{3}=\frac{5104}{5}-1020\)
\(x.\frac{1}{3}=\frac{4}{5}\)
\(x=\frac{4}{5}:\frac{1}{3}\)
\(x=\frac{12}{5}\)
♥ ☼ ↕ ✿ ⊰ ⊱ ✪ ✣ ✤ ✥ ✦ ✧ ✩ ✫ ✬ ✭ ✯ ✰ ✱ ✲ ✳ ❃ ❂ ❁ ❀ ✿ ✶ ✴ ❄ ❉ ❋ ❖ ⊹⊱✿ ✿⊰⊹ ♧ ✿
\(1020+x\cdot\frac{1}{3}=\frac{4}{5}+1020\)
\(1020+x\cdot\frac{1}{3}=\frac{5104}{5}\)
\(x\cdot\frac{1}{3}=\frac{5104}{5}-1020\)
\(x\cdot\frac{1}{3}=\frac{4}{5}\)
\(x=\frac{4}{5}\div\frac{1}{3}\)
\(x=\frac{12}{5}\)
So sánh
A=1020+9/1020-6
B=1021+5/1021+5
a)1020+X.1/3=4/5+1020
b) X:2/3=25/1/2
c)5/4/9+X-7/7/18=15/3/4
1020+30000=?
so sánh
340 và 1020
\(3^{40}=\left(3^2\right)^{20}=9^{20}< 10^{20}\Rightarrow3^{40}< 10^{20}\)
...+[1234- (2020 + 1234)]= -1020
1020:x-12=58
Tìm X: X: 4 = 1020
A. 4083
B. 4038
C. 4080
D. 4008