cho A = n + 1/ n - 3. Tim n de A la phan so toi gian
cho A = n + 1/ n - 3. Tim n de A la phan so toi gian
\(A=\frac{n+1}{n-3}=\frac{n-3+4}{n-3}=1+\frac{4}{n-3}\)
để A là phân số tối giản thì n-3 phỉa thuộc ước của 4
\(n-3\in\left\{-4;-2;-1;1;2;4\right\}\)
\(\Rightarrow n\in\left\{-1;1;2;4;5;7\right\}\)
n =3.Vì 1/3 là phân số tối giản + [3 - 3] = 1/3 +0
A= n - 3 + 4 / n-3 = 1+ 4/n-3
A tối giản <=> 4/ n-3 tối giản <=> n-3 thuộc ước 4
<=> n-3 = 1 ; -1 ; 2; -2; 4; -4
<=> n = 4;2;5;1;7;-1
k nha
Cho phan so A=\(\frac{n+1}{n-3}\left(n\inℤ,n\ne3\right)\).Tim n de A la phan so toi gian
Để A là phân số tối giản thì ƯCLN(n+1;n-3)=1 hay ƯCLN((n - 3)+4;n-3)=1
=>n-3 không chia hết cho 2 hay n là số chẵn
Cho: A= \(\frac{n+1}{n-3}\)
a) Tim nde A la phan so.
b) Tim n de A la phan so toi gian.
c) Tim n de A co gia tri lon nhat.
cho bieu thuc :A=2n+1/n-3+3n-5/n-3-4n-5/n-3.a, tim n de a nhan gia tri nguyen .b,tim n de a la phan so toi gian
cho bieu thuc :A=2n+1/n-3+3n-5/n-3-4n-5/n-3.a, tim n de a nhan gia tri nguyen .b,tim n de a la phan so toi gian
Cho phan so A = \(\frac{n+1}{n-3}\)(\(n\inℤ,n\ne3\)). Tim n de A la phan so toi gian
A=n-5/n+1 Tim n de A la phan so toi gian
giả sử n-5 và n+1 cùng chia hết cho số nguyên tố d ta có
n-5 chia hết cho d
n+1 chia hết cho d =>6chia hết cho d =>d=2 hoặc 3
n-5 chia hết cho 2=>n-5=2k=>n=2k+5
n+1=2k+5+1 =2k+6 chia hết cho 2
n-5 chia hết cho 3=>n-5=3m=>n=3m+5
n+1=3m+6 chia hết cho 2 v
vậy n khác 2k+5 và 3k+5
1) Cho bieu thuc : A= 2n +1 /n-3 + 3n-5/ n-3 - 4n-5 /n-3
a)Tim so nguyen n de A nhan gia tri nguyen
b) Tim n de A la phan so toi gian
Tim so tu nhien n de phan so A=\(\frac{2n+1}{n-3}+\frac{3n-5}{n-3}-\frac{4n-5}{n-3}\)
a/Tim n de A nhan gia tri nguyen
b/Tim n de A la phan so toi gian