Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Phạm Đức Huy
Xem chi tiết
Phạm Đức Huy
Xem chi tiết
Nguyễn Minh Khang
13 tháng 5 2016 lúc 11:12

Theo đề ta có

28/63<a/b<30/63==>a/b=29/63

=>63a=29b=>63a-29b=0

Lại có 5a-2b=3

=>a=87/19

b=189/19

a/b=29/63

Nguyễn Hoàng Tiến
13 tháng 5 2016 lúc 11:20

Ta có: 5a-2b=3

=> 5a=3+2b

=> \(a=\frac{3+2b}{5}\)

=> \(\frac{a}{b}=\frac{\frac{3+2b}{5}}{b}=\frac{3+2b}{5}\times\frac{1}{b}=\frac{3+2b}{5b}\)

\(\frac{4}{9}<\frac{3+2b}{5b}<\frac{10}{21}\)

\(<=>\frac{140b}{315b}<\frac{63\times\left(3+2b\right)}{315b}<\frac{150b}{315b}\)

\(<=>140b<189+126b<150b\)

\(<=>b=8;9;10;11;12;13\)

<=> b=Thử vào 5a-2b=3 để tìm a nguyên thì b=11 duy nhất thỏa mãn.

Vậy phân số cần tìm là \(\frac{5}{11}\)

Cô Hoàng Huyền
13 tháng 5 2016 lúc 11:24

Do \(5a-2b=3\Rightarrow b=\frac{5a-3}{2}\). Vậy \(\frac{a}{b}=\frac{a}{\frac{5a-3}{2}}=\frac{2a}{5a-3}\)

Lại có \(\frac{4}{9}<\frac{a}{b}<\frac{10}{21}\) nên ta có bất phương trình \(\frac{4}{9}<\frac{2a}{5a-3}<\frac{10}{21}\) 

\(\frac{2a}{5a-3}>\frac{4}{9}\Leftrightarrow\frac{2a}{5a-3}-\frac{4}{9}>0\Leftrightarrow\frac{18a-20a+12}{9\left(5a-3\right)}>0\)

\(\Leftrightarrow\frac{-2a+12}{9\left(5a-3\right)}>0\)\(\Leftrightarrow6>a>\frac{3}{5}\)

\(\frac{2a}{5a-3}<\frac{10}{21}\Leftrightarrow\frac{42a-50a+30}{21\left(5a-3\right)}<0\Leftrightarrow\frac{-8a+30}{21\left(5a-3\right)}<0\)

\(\Leftrightarrow a<\frac{3}{5}\) hoặc \(a>\frac{15}{4}\)

Kết hợp ta có: \(6>a>\frac{15}{4}\)

Chúc em luôn học tập tốt cùng OLM :)

Phạm Kim Oanh
Xem chi tiết
Nguyễn Việt Lâm
6 tháng 4 2022 lúc 17:02

Bài toán này dựa trên bài toán mà bạn đã đăng hôm trước: nếu \(m^2+n^2\) chia hết cho 7 thì cả m và n đều chia hết cho 7.

Đặt \(\left\{{}\begin{matrix}5a+2b=m^2\\2a+5b=n^2\end{matrix}\right.\) 

\(\Rightarrow7\left(a+b\right)=m^2+n^2\)

\(\Rightarrow m^2+n^2⋮7\)

\(\Rightarrow m;n\) đều chia hết cho 7

\(\Rightarrow m^2;n^2\) đều chia hết cho 49

\(\Rightarrow\left\{{}\begin{matrix}5a+2b⋮49\\2a+5b⋮49\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}3\left(a-b\right)⋮49\\7\left(a+b\right)⋮49\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}a-b⋮7\\a+b⋮7\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}2a⋮7\\2b⋮7\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a⋮7\\b⋮7\end{matrix}\right.\) (đpcm)

Nguyễn Xuân Nhi
Xem chi tiết
nguyen duc thang
16 tháng 6 2018 lúc 9:56

10 \(\le\)\(\le\)99 => 21 < 2n + 1 < 199 và 31 < 3n + 1 < 298

Vì 2n + 1 là số lẻ mà 2n + 1 là số chính phương

=> 2n + 1 thuộc { 25 ; 49  ; 81 ; 121 ;  169 } tương ứng số n thuộc { 12; 24; 40; 60; 84 } ( 1 )

Vì 3n + 1 là số chính phương và 31 < 3n + 1 < 298

=> 3n + 1 thuộc { 49 ; 64 ; 100 ; 121 ; 169 ; 196 ; 256 ; 289 } tương ứng n thuộc { 16 ; 21 ; 33 ; 40 ; 56 ; 65 ; 85 ; 96 } ( 2 )

Từ 1 và 2 => n = 40 thì 2n + 1 và 3n + 1 đều là số chính phương

Nguyễn Quang Linh
29 tháng 11 2018 lúc 21:40

bài cô giao đi hỏi 

Nguyễn Thành Nam
15 tháng 3 2020 lúc 21:25

chịu thôi

...............................

Khách vãng lai đã xóa
Bé Heo
Xem chi tiết
nguyễn tuấn thảo
9 tháng 8 2019 lúc 15:04

Gọi chữ số hàng chục và hàng đơn vị của số là a

Khi đó chữ số hàng trăm của số đó là 7 - 2 * a ( vì tổng các chữ số của số đó là 7 )

Do đó số đó có dạng :\(\overline{\left(7-2\times a\right)aa}=100\times\left(7-2\times a\right)+10\times a+a\)

\(=700-200\times a+10\times a+a\)

\(=700-190\times a+a\)

\(=700-189\times a\)

Ta có : \(700⋮7;189⋮7\Rightarrow700-189\times a⋮7\)

Vậy số đó chia hết cho 7

nguyễn tuấn thảo
9 tháng 8 2019 lúc 15:17

Gọi số đó là Aef\(\left(\overline{ef}⋮4\right)\)

Ta có : \(\overline{Aef}=10^n\times d+\overline{ef}=4\times25\times10^{n-1}\times d+\overline{ef}\)( với n là số mũ của A )

Vì : \(4⋮4;\overline{ef}⋮4\)

\(\Rightarrow10^n\times d+\overline{ef}⋮4\)

\(\Rightarrow\overline{Aef}⋮4\)

Vậy nếu 1 số có 2 chữ số tận cùng chia hết cho 4 thì số đó chia hết cho 4

nguyễn tuấn thảo
9 tháng 8 2019 lúc 15:22

\(\overline{aaa}+\overline{bbb}\)

\(=111\cdot\left(a+b\right)\)

\(=3\cdot37\cdot\left(a+b\right)\)

\(\Rightarrow\overline{aaa}+\overline{bbb}⋮37\)

Free Fire
Xem chi tiết
Nguyễn Linh Chi
25 tháng 3 2020 lúc 20:03

1. Câu hỏi của Nguyễn Huyền Như - Toán lớp 6 - Học toán với OnlineMath

Khách vãng lai đã xóa
Free Fire
Xem chi tiết
Trí Tiên
16 tháng 2 2020 lúc 14:57

Bài 1 :

Ta có : abc-cba=a.100+b.10+c-c.100-b.10-a=99(a-c)=6b3

=> b=9=> a-c=7

=>  a thuộc {8;9}; c thuộc {1;2}

Vậy có 2 số thỏa mãn điều kiện : 891;912

Bài 2 :

Gọi số phải tìm là abc , với a , b , c thuộc N và 1 < hoặc = a < hoặc = 9 , 0 < hoặc = b , c < hoặc = 9.

 

Theo giả thiết ta có : 

abc = k2k2 , kNk∈N

abc = 56l , lNl∈N

 kk2k2 = 56l = 4.14ll

l=14q2⇒l=14q2 , qNq∈N

Mặt khác , ta lại có 1005619992117100≤561≤999⇒2≤1≤17

Từ (1) và (2) , ta có : q = 1 ;  ll= 14

Vậy số chính phương phải tìm là 784.

Khách vãng lai đã xóa
Free Fire
16 tháng 2 2020 lúc 15:07

Mình cảm ơn bn ミ★ Đạt ★彡 nhiều nha.Thực ra mình chỉ hiểu bài 1 còn bài 2 mk ko hiểu nhưng ko sao dù gì cũng cảm ơn bn .

Khách vãng lai đã xóa
Trí Tiên
16 tháng 2 2020 lúc 15:15

Bài 3 :

Đặt \(B=4^{2018}+4^{2017}+...+4^2+4+1\)

\(\Rightarrow4B=4^{2019}+4^{2018}+...+4^3+4^2+4\)

\(\Rightarrow4B-B=4^{2019}-1\)

\(\Rightarrow B=\frac{4^{2019}-1}{3}\)

Khi đó : \(A=75\cdot B+25=75\cdot\frac{4^{2019}-1}{3}=25\cdot\left(4^{2019}-1\right)+25\)

\(=25\cdot4^{2019}-25+25=25\cdot4^{2019}⋮4^{2019}\) ( đpcm )

Khách vãng lai đã xóa
minhnek855
Xem chi tiết
minhnek855
15 tháng 11 2023 lúc 20:49

bài này hình như trong đề nhngw milk ko nhớ

Big City Boy
Xem chi tiết
Nguyễn Việt Lâm
27 tháng 2 2023 lúc 15:41

Tạo số có 4 chữ số bất kì (bao gồm 0 đứng đầu): \(A_5^4=120\) số

Tạo số có 4 chữ số sao cho số 0 đứng đầu (giống như tạo số có 3 chữ số từ các số 1,2,3,4) có \(A_4^3=24\) số

Bây giờ lấy tổng trường hợp 1 trừ tổng trường hợp 2 là ra kết quả cần tìm.

Để dễ hình dung ta gọi số ở TH đầu là abcd, vai trò của các chữ số như nhau, mà ta có thể tạo ra 120 số như vậy, do đó, mỗi vị trí một chữ số sẽ xuất hiện \(120:5=24\) lần

Cụ thể với chữ số 4 đi, theo lý luận bên trên số 4 xuất hiện ở hàng ngàn là 24 lần, hàng trăm 24 lần, hàng chục 24 lần, hàng đơn vị 24 lần, do đó tổng giá trị của chữ số 4 là:

\(24.4.1000+24.4.100+24.4.10+24.4.1=24.4.1111\)

Tương tự với các chữ số khác, ta được tổng của trường hợp đầu là:

\(24.4.1111+24.3.1111+24.2.1111+24.1.1111+24.0.1111=266640\)

- Với trường hợp 2, y hệt như trên, mỗi chữ số xuất hiện ở 1 vị trí \(\dfrac{24}{4}=6\) lần

Do đó tổng các chữ số ở TH này là:

\(6.4.111+6.3.111+6.2.111+6.1.111=6660\)

Kết quả: \(266640-6660=259980\)