Chứng minh : \(\frac{1}{1.4}+\frac{1}{3.8}+\frac{1}{5.12}+....+\frac{1}{99.200}<\frac{5}{12}\)
cho A= 1/1.4+1/3.8+1/5.12+...+1/99.200. chứng minh A<5/12
Cho A=1/1.4+1/3.8+1/5.12+...+1/99.200
CMR:A<5/12
cho A=1/1.4+1/3.8+1/5.12+..+1/99.200 CMR A<5/12
chi tiết nha
Chứng minh rằng \(\frac{3}{1.4}+\frac{3}{2.6}+\frac{3}{3.8}+...+\frac{1}{2012.1342}\)<1.5
\(\frac{3}{1.4}+\frac{3}{2.6}+\frac{3}{3.8}+...+\frac{1}{2012.1342}\)
\(=\frac{3}{1.4}+\frac{3}{2.6}+\frac{3}{3.8}+...+\frac{3}{2012.4026}\)
\(=\frac{6}{2.4}+\frac{6}{4.6}+\frac{6}{4.8}+...+\frac{6}{4024.4026}\)
\(=3\cdot\left(\frac{2}{2.4}+\frac{2}{4.6}+\frac{2}{6.8}+...+\frac{2}{4024.4026}\right)\)
\(=3\cdot\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+...+\frac{1}{4024}-\frac{1}{4026}\right)\)
\(=3\cdot\left(\frac{1}{2}-\frac{1}{4026}\right)\)
\(=3\cdot\frac{1}{2}-3\cdot\frac{1}{4026}\)
\(=1,5-\frac{3}{4026}< 1,5\)
Mọi người giải hộ mk nka, mình đang cần gấp. Thanks nhìu!
Cho A= 1/1.4+1/3.8+1/5.12+...+1/99.200
CMR: A<5/12
Ghi chi tiết hộ mk nha, thanks lần 2!
Chứng minh rằng:A=\(\frac{3}{1.4}\)+\(\frac{3}{2.6}\)+\(\frac{3}{3.8}\)+....+\(\frac{1}{2012.1342}\)<1;5
\(A=\dfrac{3}{1.4}+\dfrac{3}{2.6}+\dfrac{3}{3.8}+...............+\dfrac{1}{2012.1342}\)
\(A=\dfrac{3}{1.4}+\dfrac{3}{2.6}+\dfrac{3}{3.8}+...........................+\dfrac{3}{2012.4026}\)
\(A=\dfrac{6}{2.4}+\dfrac{6}{4.6}+\dfrac{6}{6.8}+..........................+\dfrac{6}{4024.4026}\)
\(A=3\left(\dfrac{2}{2.4}+\dfrac{2}{4.6}+\dfrac{2}{6.8}+...................+\dfrac{2}{4024.4026}\right)\)
\(A=3\left(\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{8}+....................+\dfrac{1}{4024}-\dfrac{1}{4026}\right)\)
\(A=3\left(\dfrac{1}{2}-\dfrac{1}{4026}\right)\)
\(A=3.\dfrac{1}{2}-3.\dfrac{1}{4026}\)
\(A=1,5-\dfrac{3}{4026}< 1,5\)
Ta có
A = \(\dfrac{3}{1.4}\) + \(\dfrac{3}{2.6}\) + \(\dfrac{3}{3.8}\) + ... + \(\dfrac{1}{2012.1342}\)
A = \(\dfrac{3}{1.4}\) + \(\dfrac{3}{2.6}\) + \(\dfrac{3}{3.8}\) + ... + \(\dfrac{3}{2012.4026}\)
A = \(\dfrac{6}{2.4}\) + \(\dfrac{6}{4.6}\) + \(\dfrac{6}{6.8}\) + ... + \(\dfrac{6}{4024.4026}\)
A = \(3\left(\dfrac{2}{2.4}+\dfrac{2}{4.6}+\dfrac{2}{6.8}+...+\dfrac{2}{4024.4026}\right)\)
A = \(3\left(\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{6}+...+\dfrac{1}{4024}-\dfrac{1}{4026}\right)\)
A = \(3\left(\dfrac{1}{2}-\dfrac{1}{4026}\right)\)
A = 3.\(\dfrac{1}{2}\) - 3.\(\dfrac{1}{4026}\)
A = 1,5 - \(3.\dfrac{1}{4026}\) < 1,5
=> A < 1,5
=> đpcm
Cô @Bùi Thị Vân hình như có gì đó nhầm lẫn!!
Chứng minh rằng:A=\(\frac{3}{1.4}\)+\(\frac{3}{2.6}\)+\(\frac{3}{3.8}\)+....+\(\frac{1}{2012.1342}\)<1;5
\(A=\)\(\frac{3}{1.4}\)\(+\)\(\frac{3}{2.6}\)\(+\)\(\frac{3}{2.8}\)\(+\).........\(+\)\(\frac{1}{2012.1342}\)\(< 1,5\)
\(=\)\(\frac{3}{1.4}\)\(+\)\(\frac{3}{2.6}\)\(+\)\(\frac{3}{3.8}\)\(+\)............\(+\)\(\frac{3}{2012.4026}\)
\(=\)\(\frac{6}{2.4}\)\(+\)\(\frac{6}{4.6}\)\(+\)\(\frac{6}{6.8}\)\(+\)..............\(+\)\(\frac{6}{4024.4026}\)
\(=\)\(3.\)\(\left(\frac{2}{2.4}+\frac{2}{4.6}+\frac{2}{6.8}+...........+\frac{2}{4024.4026}\right)\)
\(=\)\(3.\)\(\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+....+\frac{1}{4024}-\frac{1}{4026}\right)\)
\(=\)\(3.\)\(\left(\frac{1}{2}-\frac{1}{4026}\right)\)
\(=\)\(3.\)\(\frac{1}{2}\)\(-\)\(3.\)\(\frac{1}{4026}\)
\(=\)\(1,5\)\(-\)\(\frac{3}{4026}\)\(< \)\(1,5\)
Vậy \(A< 1,5\)
\(B=\frac{1}{1.4}+\frac{1}{4.3}+\frac{1}{3.8}+...+\frac{1}{7.16}+\frac{1}{16.9}+\frac{1}{9.20}\)
tìm B
B=1/1x4+1/4x3+1/3x8+...+1/7x16+1/16x9+1/9x20
2B=2x(1/4+1/12+1/24+...+1/112+1/144+1/180
2B=2/8+2/24+2/48+...+2/224+2/288+2/360
2B=2/2x4+2/4x6+2/6x8+...+2/14x16+2/16x18+2/18x20
2B=1/2-1/4+1/4-1/6+1/6-1/8+...+1/14-1/16+1/16-1/18+1/18-1/20
2B=1/2-1/20
2B=9/20
B=9/20:2
B=9/40