tinh M=2017+2017/1+2+2017/1+2+3+...+2017/1+2+3+...+2016
Tinh :
B=2017 + 2017/1+2 + 2017/1+2+3 + 2017/1+2+3+4 +....+2017/1+2+3+...+2016
tính 2017+2017/(1+2)+2017/(1+2+3)+...+2017/(1+2+3+...+2016)
999 - 888 - 111 + 111 - 111 + 111 - 111
= 111 - 111 + 111 - 111 + 111 - 111
= 0 + 111 - 111 + 111 - 111
= 111 - 111 + 111 - 111
= 0 + 111 - 111
= 111 - 111
= 0
K-2016=1+ (1+2)+(1+2+3)+….+(1+2+3+…+2017)/2017*1+2016*2+2015*3+…+2*2016+1*2017
tìm K
A= ( 1/2017+ 2/2016+ 3/2015+...+ 2015/3+ 2016/2+ 2017) : ( 1/2+1/3+1/4+...+1/2017+1/2018)
So sanh A va B biet
A=2017^100/1+2017+2017^2+2017^3+.....+2017^100
B=2016^100/1+2016+2016^2+2016^3+.....+2016^100
tính m=2016+2016/2+2015/3+2014/4+...+1/2017/1/2+1/3+1/4+...+1/2017
so sanh A va B
A=2017^100 / 1+2017+2017^2+2017^3+...+2017^100
B=2016^100 / 1+2016+2016^2+2016^3+...+2016^100
Cho P= 1^2017+2^2017+3^2017+...+2016^2017, Q= 1+2+3+4+...+2016. Chứng minh P chia hết cho Q
sử dụng đồng dư thức hoặc hằng đẳng thức
So sánh:
a) A = 102016 - 2 / 102017 - 2 và B = 202015 + 1 / 102016 + 1
b) A = 20162017 - 3 / 20162018 - 3 và B = 20162016 + 3 / 20162017 + 3
c) A = 20172016 - 2015 / 20172017 - 2015 và B = 20172015 + 1 / 20172016 + 1