cho tám giác ABC vuông tại A. M là điểm di động trên BC. Gọi I, K ần lượt là hình chiếu của M trên AB, AC. Xác định vị trí của M để IK có độ dài nhỏ nhất
1) Cho tâm giác ABC vuông tại A. Đường cao AH. Gọi I, K theo thuwstjjwlaf hình chiếu của H trân AB và AC. Gọi M là trung điểm BC. Chứng minh:
a) AH=IK
b) IK vuông góc AM
2) Cho tam giác ABC vuông tại A.H thuộc BC. Gọi I, K lần lượt là hình chiếu của H trên AB, AC
a) CHứng minh tứ giác AKHI là hình chữ nhật
b) Xác định vị trí điểm H để IK nhỏ nhất
Tam giác MPN vuông tại M. K là điểm di động trên PN. Gọi HI lần lượt là hình chiếu của K trên MN và MP. Xác định vị trí của M để HI có độ dài nhỏ nhất.
Cho tam giác vuông ABC vuông tại A, điểm M chuyển động trên BC. gọi E, H lần lượt là hình chiếu của M trên AB, AC. Hãy xác định vị trí của điểm M để EH bé nhất.
Cho tam giác ABC vuông ở A, D thuộc cạnh BC. Gọi I,K lần lượt là hình chiếu của D trên AB và AC. Gọi AH là đường cao của tam giác ABC.
a) Chứng minh góc IHK bằng 90 độ
b) Khi D chuyển động trên BC thì trung điểm của IK chuyển động trên đường nào?
c) Xác định vị trí để IK có độ dài ngắn nhất
a) 2 đoạn AD và IK cắt nhau ở O. Nối O với H.
Xét tứ giác AIDK: ^IAK = ^AID = ^AKD = 900 => Tứ giác AIDK là hình chữ nhật
O là tâm của hình chữ nhật AIDK => O là trung điểm AD & IK; OA=OD=OI=OK
Xét \(\Delta\)AHD: ^AHD=900; O là trung điểm AD => OH=OA=OD
=> OH=OI=OK. Trong \(\Delta\)HIK có: O là trung điểm IK; OH=OI=OK
=> \(\Delta\)HIK vuông tại H => ^IHK = 900 (đpcm).
b) Lấy M và N lần lượt là trung điểm của AB và AC.
Xét \(\Delta\)BAD: O là trung điểm AD; M là trung điểm AB => OM là đường trung bình \(\Delta\)BAD
=> OM // BD hay OM // BC. Tương tự: ON // BC
=> 3 điểm M;O;N thẳng hàng => O nằm trên đường trung bình MN cố định của \(\Delta\)ABC
Vậy khi D chạy trên BC thì O (Trung điểm IK) luôn chạy trên đường trung bình của \(\Delta\)ABC.
c) Ta có tứ giác AIDK là hình chữ nhật có 2 đường chéo AD là IK => AD=IK
Mà AD > AH (Q/h đường xiên hình chiếu) nên IK > AH
=> Độ dài ngắn nhất của IK là AH. Dấu "=" xảy ra khi điểm D trùng điểm H.
Cho tam giác ABC vuông tại A và một điểm M trên BC. Gọi D và E lần lượt là hình chiếu của M trên AB và AC. Tìm vị trí điểm M trên BC để DE có độ dài nhỏ nhất.
tam giác ABC vuông ở A cho ta góc BAC =90 độ
MD vuông góc với AB => góc MDA =90 độ
ME vuông góc với AC => góc MEA =90 độ
=> tứ giác ADME là hình chữ nhật => DE=AM =>DE min<=> AM min <=> AM vuông góc với BC
Vậy M là chân đường cao kẻ từ A , M thuộc BC thì DE có độ dài nhỏ nhất
Cho tam giác ABC vuông tại A, D là điểm di động trên cạnh BC. Gọi E, F lần lượt là hình chiếu vuông góc của điểm D lên AB, AC. Xác định vị trí của điểm D để tứ giác AEDF là hình vuông. Xác định vị trí của điểm D sao cho 3AD + 4EF đạt giá trị nhỏ nhất.
jup nha
a)tứ giác AEDF là hình chữ nhật (vì E=A=F=900 )
Để tứ giác AEDF là hình vuông thì AD là tia phân giác của góc BAC
b)do tứ giác AEDF là hình chữ nhật nên AD=EF
=>3AD+4EF nhỏ nhất => AD nhỏ nhất
D là hình chiếu góc vuông của A lên BC
Cho tam giác ABC vuông cân tại A, trung tuyến AD. Điểm M di động trên đoạn AD. Gọi N và P lần lượt là hình chiếu của điểm M trên AB và AC. Vẽ NH vuông góc với PD tại H. Xác định vị trí điểm M để tam giác AHB có diện tích lớn nhất
cho tam giác ABC vuông cân tại A có AB=AC=a trung tuyến AD, M là 1 điểm di động trên AD. Gọi N và P lần lượt là hình chiếu vuông góc của M trên các cạnh AB và AC. PD cắt tia Bx vuông góc với AB ở điểm E. Gọi H là hình chiếu của N trên PD.
a) chứng minh 3 điểm B,M,H thẳng hàng
b) xác định vị trí điểm M để tam giác AHB có diện tích lớn nhất tính giá trị lớn nhất đó
c) chứng tỏ khi M di động, đường thẳng HN luôn đi qua 1 điểm cố định .Tìm vị trí của M để HN dài nhất
( giải 1 câu là đc rồi cảm ơn mấy mem )
cho tam giác đều ABC và M là 1 điểm bất kì trên cạnh BC. Gọi D,E lần lượt là hình chiếu vuông góc của M trên AB và AC. Xác định vị trí của M để tam giác MDE có chu vi nhỏ nhất