Chứng minh rằng : nếu ba số a;a+k ; a+2k nguyên tố lớn hơn 3 thì k chia hết cho 6
Gọi A’, B’ và C’ tương ứng là ảnh của ba điểm A, B và C qua phép đồng dạng. Chứng minh rằng nếu A B → = p A C → t h ì A ' B ' → = p A ' C ' → , trong đó p là một số. Từ đó chứng minh rằng phép đồng dạng biến ba điểm thẳng hàng thành ba điểm thẳng hàng và nếu điểm B nằm giữa hai điểm A và C thì điểm B' nằm giữa hai điểm A’ và C’.
Để ý rằng
Ta có:
Từ đó suy ra
Giả sử ba điểm A, B, C thẳng hàng và điểm B nằm giữa hai điểm A và C. Khi đó A B → = t A C → , với 0 < t < 1. Áp dụng bài 1.39 ta cũng có A ' B → = t A ' C ' → , với 0 < t < 1. Do đó ba điểm A′, B′, C′ thẳng hàng và điểm B' nằm giữa hai điểm A' và C'.
Chứng minh rằng nếu ba số a, a+k, a+2k đều là các số nguyên tố lớn hơn 3, thì k chia hết cho 6
Do a, a + k, a + 2k đều là nguyên tố lớn hơn 3 nên đều là số lẻ và không chia hết cho 3.
• Vì a và a + k cùng lẻ nên a + k - a = k ⋮ 2. (1)
• Vì a, a + k, a + 2k đều không chia hết cho 3 nên khi chia cho 3 ít nhất hai số có cùng số dư, khi đó:
+ Nếu a và a + k có cùng số dư, thì suy ra: (a+k) - a = k ⋮ 3
+ Nếu a + k và a + 2k có cùng số dư, thì suy ra: (a+2k )- (a+k)= k ⋮ 3+ Nếu a và a + 2k có cùng số dư, thì suy ra:
( a + 2k ) - a = 2k 3 nhưng (2,3) = 1 nên k 3
Vậy, ta luôn có k chia hết cho 3 (2)
Từ (1),(2) và do (2,3)=1 ta suy ra k ⋮ 6, đpcm.
Nhận xét: Trong lời giải trên, ta đã định hướng được rằng để chứng minh k ⋮ 6 thì cần chứng minh k ⋮ 2 và k ⋮ 3 và ở đó:
• Việc chứng minh k ⋮ 2 được đánh giá thông qua nhận định a, a + k,a + 2k đều là nguyên tố lẻ hơn kém nhau k đơn vị.
• Việc chứng minh k ⋮ 3 được đánh giá thông qua nhận định “ba số lẻ không chia hết cho 3 thì có ít nhất hai số có cùng số dư” và như vậy hiệu của hai số đó sẽ chia hết cho 3.
Bạn cao minh tâm ghi là "2k 3" và "k 3" có nghĩa là gì
Cho ba vecto a → , b → , c → trong không gian. Chứng minh rằng nếu m a → + n b → + p c → = 0 → và một trong ba số m, n, p khác không thì ba vecto a → , b → , c → đồng phẳng
Giả sử p ≠ 0 ta có:
Do đó, ba vecto a → , b → , c → đồng phẳng theo định lí 1
chứng minh rằng nếu ba số a , b ,c lập thành một cấp số cộng thì : a2+8bc=(2b+c)2
Chứng minh rằng nếu a, b, c là ba số thỏa mãn a + b +c = 2013 và 1/a + 1/b + 1/c = 1/2013 thì phải có một trong ba số bằng 2013
chứng minh rằng nếu a+b+c=2021 và 1/a+1/b+1/c=2021 thì 1 trong ba số đó băng 2021
1/2021 thì giải được
Từ đề bài ta có: \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}\Leftrightarrow\frac{ab+bc+ca}{abc}=\frac{1}{a+b+c}\)
\(\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)=0\)
Vậy một trong 3 số a+b,b+c,c+a bằng 0 hay ta có đpcm
Chứng minh rằng nếu ba số lập thành một cấp số nhân, đồng thời lập thành cấp số cộng thì ba số ấy bằng nhau.
Gọi 3 số đó là a - d, a, a + d rồi áp dụng tính chất của cấp số cộng và cấp số nhân.
chứng minh rằng: nếu ba số a, b, c là 3 số hạng liên tiếp của một cấp số cộng thì b bằng trung bình cộng của a và c
Chứng minh rằng: Nếu tam giác ABC có góc A tù và độ dài ba cạnh là ba số tự nhiên liên tiếp thì độ dài các cạnh đó bằng 2,3,4