Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
31 tháng 12 2019 lúc 14:17

Để ý rằng

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Ta có:

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Từ đó suy ra Giải sách bài tập Toán 11 | Giải sbt Toán 11

Giả sử ba điểm A, B, C thẳng hàng và điểm B nằm giữa hai điểm A và C. Khi đó  A B →   =   t A C → , với 0 < t < 1. Áp dụng bài 1.39 ta cũng có  A ' B →   =   t A ' C ' → , với 0 < t < 1. Do đó ba điểm A′, B′, C′ thẳng hàng và điểm B' nằm giữa hai điểm A' và C'.

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
16 tháng 5 2018 lúc 3:31

Do a, a + k, a + 2k đều là nguyên tố lớn hơn 3 nên đều là số lẻ và không chia hết cho 3.

• Vì a và a + k cùng lẻ nên a + k - a = k ⋮ 2. (1)

• Vì a, a + k, a + 2k đều không chia hết cho 3 nên khi chia cho 3 ít nhất hai số có cùng số dư, khi đó:

   + Nếu a và a + k có cùng số dư, thì suy ra: (a+k) - a = k ⋮ 3

   + Nếu a + k và a + 2k có cùng số dư, thì suy ra: (a+2k )- (a+k)= k ⋮ 3

   + Nếu a và a + 2k có cùng số dư, thì suy ra:

( a + 2k ) - a = 2k 3 nhưng (2,3) = 1 nên k 3

Vậy, ta luôn có k chia hết cho 3 (2)

Từ (1),(2) và do (2,3)=1 ta suy ra k ⋮ 6, đpcm.

Nhận xét: Trong lời giải trên, ta đã định hướng được rằng để chứng minh k ⋮ 6 thì cần chứng minh k ⋮ 2 và k ⋮ 3 và ở đó:

• Việc chứng minh k ⋮ 2 được đánh giá thông qua nhận định a, a + k,a + 2k đều là nguyên tố lẻ hơn kém nhau k đơn vị.

• Việc chứng minh k ⋮ 3 được đánh giá thông qua nhận định “ba số lẻ không chia hết cho 3 thì có ít nhất hai số có cùng số dư” và như vậy hiệu của hai số đó sẽ chia hết cho 3.

Đặng Tuấn Vũ
24 tháng 3 lúc 16:56

Bạn cao minh tâm ghi là "2k 3" và "k 3" có nghĩa là gì

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
23 tháng 2 2018 lúc 7:53

Giả sử p ≠ 0 ta có:

Giải bài tập Toán 11 | Giải Toán lớp 11

Do đó, ba vecto  a → ,   b → ,   c →  đồng phẳng theo định lí 1

Hatake Kakashi
Xem chi tiết
Nguyễn Minh Hiển
Xem chi tiết
vuong dao duong
Xem chi tiết
bui van trong
14 tháng 10 2021 lúc 13:17

1/2021 thì giải được

Khách vãng lai đã xóa
sdsdfdfdf
20 tháng 10 2021 lúc 12:18

Từ đề bài ta có: \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}\Leftrightarrow\frac{ab+bc+ca}{abc}=\frac{1}{a+b+c}\)

\(\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)=0\)

Vậy một trong 3 số a+b,b+c,c+a bằng 0 hay ta có đpcm

Khách vãng lai đã xóa
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
9 tháng 1 2018 lúc 6:52

Gọi 3 số đó là a - d, a, a + d rồi áp dụng tính chất của cấp số cộng và cấp số nhân.

Ngọc Anh Channel
Xem chi tiết
KCLH Kedokatoji
Xem chi tiết